D^0 meson production in $p\,\text{Pb}$ and PbPb collisions at $\sqrt{S_{\text{NN}}} = 5$ TeV with LHCb

Xianglei Zhu (Tsinghua University) on behalf of the LHCb collaboration
Outline

• The LHCb detector
• pPb data taking and physics motivation
• Prompt D^0 production in pPb collisions
• Prospects of D^0 measurement in PbPb and fixed-target collisions
• Summary
The LHCb detector

A single arm **general purpose detector** at **forward** rapidity!

pseudorapidity acceptance $2 < \eta < 5$

- **Vertex detector**
 - IP resolution $\sim 20\mu m$
 - Decay time resolution ~ 45 fs

- **RICH**
 - $\varepsilon(K \rightarrow K) \sim 95$
 - Mis-ID: $\varepsilon(\pi \rightarrow K) \sim 5$

- **Muon system**
 - μ identification: $\varepsilon(\mu \rightarrow \mu) \sim 97$
 - Mis-ID: $\varepsilon(\pi \rightarrow \mu) \sim 1-3$

- **Tracking system**
 - $\Delta p/p = 0.5\% - 1.0\%$
 - (5 GeV/c – 200 GeV/c)

- **Dipole magnet**
 - Bending power $4\ Tm$

- **Electromagnetic**
 - + hadronic calorimeters

X. Zhu, D0 production in LHCb, HP2016
pPb data taking in 2013

- **Asymmetric collision energy**
 - $E_p = 4$ TeV
 - $E_{Pb} = 1.58$ TeV per nucleon
 - $\sqrt{S_{NN}} = 5$ TeV
 - $\gamma_{cms} = \pm 0.465$, nucleon-nucleon cms

- **Rapidity coverage**
 - Rapidity in nucleon-nucleon cms, y^*
 - **Forward (pPb)**: $1.5 < y^* < 4.0$
 - **Backward (Pbp)**: $-5.0 < y^* < -2.5$
 - Common coverage: $2.5 < |y^*| < 4.0$

- **Integrated luminosity**
 - Forward (pPb): 1.1 nb$^{-1}$
 - Backward (Pbp): 0.5 nb$^{-1}$
 - **Only 1/10 data used for the preliminary prompt D^0 analysis!**
pPb open charm physics

- Open charm states are sensitive probe to the QGP properties in AA collisions
- However, **cold nuclear matter effect** should be quantified in detail first
 - Nuclear parton distribution function
 - Initial stage radiation or energy loss due to soft collisions
 - Final stage hadronic rescatterings
- With the pPb data, LHCb can play important role in understanding cold nuclear matter effect, thanks to its unique capability
 - Open charm measurement down to zero p_T at forward rapidity
 - Separation of prompt and secondary open charm (from b decay)
Prompt D^0 measurement in pPb

- Reconstructed through $D^0 \rightarrow K^-\pi^+$ decays
- Simultaneous 2D fit to D^0 mass and impact parameter (IP)

\rightarrow Extraction of prompt D^0 yields down to zero-p_T

Mass distribution:
Signal: Crystal Ball
Background: linear function

IP distribution:
Prompt Signal: from simulation
D^0 from b: from simulation
Background: shape from sidebands

X. Zhu, D^0 production in LHCb, HP2016

2016/09/24

LHCb-CONF-2016-003
Prompt D^0 total cross-sections in pPb

$\sigma_{\text{forward}}(p_T < 8 \text{ GeV/c}, 1.5 < |y^*| < 4.0) = 237 \pm 1 \pm 15 \text{ mb},$

$\sigma_{\text{forward}}(p_T < 8 \text{ GeV/c}, 2.5 < |y^*| < 4.0) = 124 \pm 1 \pm 8 \text{ mb},$

$\sigma_{\text{backward}}(p_T < 8 \text{ GeV/c}, 2.5 < |y^*| < 5.0) = 259 \pm 3 \pm 19 \text{ mb},$

$\sigma_{\text{backward}}(p_T < 8 \text{ GeV/c}, 2.5 < |y^*| < 4.0) = 174 \pm 2 \pm 13 \text{ mb}.$

<table>
<thead>
<tr>
<th>Source</th>
<th>Relative uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>forward</td>
</tr>
<tr>
<td>Correlated between bins</td>
<td></td>
</tr>
<tr>
<td>Signal extraction</td>
<td>0.4</td>
</tr>
<tr>
<td>Tracking</td>
<td>3.6</td>
</tr>
<tr>
<td>PID efficiency</td>
<td>1.1−20</td>
</tr>
<tr>
<td>Luminosity</td>
<td>1.9</td>
</tr>
<tr>
<td>$B(D^0 \to K^+\pi^-)$</td>
<td>1.0</td>
</tr>
<tr>
<td>Uncorrelated between bins</td>
<td></td>
</tr>
<tr>
<td>MC Sample size</td>
<td>1.4−6.5</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>1.5−16</td>
</tr>
</tbody>
</table>
Prompt D^0 double differential cross-section in $p\text{Pb}$

$LHCb$-CONF-2016-003

Backward:

$-5.0 < y^* < -2.5$

$p_T < 8$ GeV/c

Forward:

$1.5 < y^* < 4.0$

$p_T < 8$ GeV/c
Prompt D^0 differential cross-section in pPb

Sizable forward-backward asymmetry
Prompt D^0 nuclear modification factor in pPb

- $R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})}{\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})}$, $A=208$

- Prompt D^0 cross-section in pp collisions at $\sqrt{s} = 5$ TeV was extrapolated using LHCb measurements at 7 and 13 TeV

![Graph showing the extrapolation of cross-section with different models](image)

Extrapolated: $\sigma_{pp}(p_T < 8 \text{ GeV}/c, 2.5 < |y^*| < 4.0) = 713 \pm 95 (\text{LHCb}) \pm 47 (\text{fit model}) \mu b$

- Prompt D^0 in pp at $\sqrt{s} = 5$ TeV was measured recently!

Measured: $\sigma_{pp}(p_T < 8 \text{ GeV}/c, 2.5 < |y^*| < 4.0) = 943 \pm 2 \pm 49 \mu b$

CAUTION: Preliminary R_{pPb} uses extrapolated pp cross-sections for reference! will be updated soon with the measured pp values!
Prompt D^0 nuclear modification factor in pPb

- Extrapolated pp data at $\sqrt{s} = 5$ TeV for reference

Prompt D^0 nuclear modification factor in pPb

- Extrapolated pp data at $\sqrt{s} = 5$ TeV for reference
- Nuclear modification factor smaller at forward rapidity
- Measurements consistent with theoretical predictions

Prompt D^0 forward-backward asymmetry in pPb

- $R_{FB}(|y^*|, p_T) = \frac{\sigma_{pp}(+|y^*|, p_{T}, \sqrt{s_{NN}})}{\sigma_{Pbp}(-|y^*|, p_{T}, \sqrt{s_{NN}})}$

- No need for pp reference, systematic uncertainty largely cancels
- Significant forward-backward asymmetry observed

PbPb data taking in 2015

- LHCb first participated in PbPb run in December 2015
- 24 colliding bunches, integrated luminosity $L = 3 - 5 \, \mu\text{b}^{-1}$
- Minimum bias trigger

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015

A PbPb event with 1130 reconstructed tracks and a J/ψ candidate
Centrality definition in PbPb

• Energy deposition in ECAL/HCAL are used to define collision centrality
 • Not saturated even for most central collisions
 • Minimal correlation with particle production measurements
 • Tracking may be possible up to \(~15\)k VELO hits (\(100\% - 50\%\) centrality)

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015
D^0 in PbPb (a first look)

Reconstructed through $D^0 \rightarrow K^- \pi^+ + CC$ decays

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015
Fixed-target experiment with LHCb

SMOG: System for Measuring Overlap with Gas

- Inject noble gases (He, Ne, Ar) into the LHCb vertex detector
- fixed-target physics in pA and PbA configuration, covering mid-rapidity!

Bridge the gap from SPS to LHC in a single experiment!
D^0 in fixed-target collisions (a first look)

pNe collisions at $\sqrt{s_{\text{NN}}} = 110$ GeV, ~12 hours data taking in 2015

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015
Summary

- **Prompt D^0 in $\sqrt{s_{NN}} = 5$ TeV pPb collisions**
 - Preliminary results on cross-sections, nuclear modification factor, and forward-backward ratio obtained with 1/10 data
 - Sizable forward-backward asymmetry observed, consistent with theoretical predictions
 - Analysis to be updated including full pPb statistics and $\sqrt{s} = 5$ TeV pp data as reference

- **D^0 in $\sqrt{s_{NN}} = 5$ TeV PbPb collisions**
 - Clear D^0 signals, analysis on-going, results expected up to centralities around 50%

- **D^0 in fixed-target collisions**
 - Clear D^0 signals, development of methods to exploit the data

- **Outlook**
 - Systematic prompt open charm ($D^+, D^{*+}, D_S^+, \Lambda_c$) analysis in $\sqrt{s_{NN}} = 5$ TeV pPb collisions
 - New pPb data taking at $\sqrt{s_{NN}} = 8$ TeV (high statistics) in 2016
 - Additional fixed-target data taking runs

Thanks and stay tuned!