A flavor-safe composite explanation of R_K

Adrián Carmona*, Florian Goertz

CERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland

Abstract

In these proceedings we discuss a flavor-safe explanation of the anomaly found in $R_K = \frac{\mathcal{B}(B \rightarrow K\mu^+\mu^-)}{\mathcal{B}(B \rightarrow Ke^+e^-)}$ by LHCb, within the framework of composite Higgs models. We present a model featuring a non-negligible degree of compositeness for all three generations of right-handed leptons, which leads to a violation of lepton-flavor universality in neutral current interactions while other constraints from quark- and lepton-flavor physics are met. Moreover, the particular embedding of the lepton sector considered in this setup provides a parametrically enhanced contribution to the Higgs mass that can weak considerably the need for ultra-light top partners.

Keywords: Flavor physics, Composite Higgs models, Violation of Lepton Flavor Universality

1. Introduction

Composite Higgs models provide an elegant explanation to the hierarchy problem by protecting the Higgs mass by its finite size [1, 2]. In addition, a sizable mass gap between the electroweak (EW) and the compositeness scale $\Lambda \approx 4\pi f_\pi$ can be achieved if one assumes the Higgs to be a pseudo Nambu-Goldstone boson (pNGB) of some global symmetry of the strong sector [3, 4, 5]. One typical assumption is that this global symmetry is only broken by the weak couplings of the elementary SM-like degrees of freedom, corresponding to the SM fermions – with the possible exception of the right-handed (RH) top quark – and gauge bosons, which generates a Higgs potential radiatively and triggers the electroweak symmetry breaking (EWSB). Within the paradigm of partial compositeness, where one assumes linear mixings of the SM-like fermions with their composite counterparts, the light mass eigenstates become mixtures of elementary and composite degrees of freedom, tying together the dynamics behind the observed flavor pattern and EWSB. Since the Yukawa couplings are generated through such linear couplings after integrating out the corresponding composite counterparts, it is usually thought that only third generation quarks will exhibit a sizable degree of compositeness and will be relevant for EWSB. However, the fact that neutrinos may have Majorana masses, together with the observed non-hierarchical mixing pattern in the PMNS matrix, can change this situation for the lepton sector, see e.g. [6, 7]. In these proceedings we will discuss a very minimal implementation of leptons in composite Higgs models, where neutrino masses are generated via a type-III seesaw mechanism and the RH lepton sector is unified by embedding the RH charged leptons and the RH neutrinos in a single representation of the global group G (for each generation) [8]. Linked to this unification, our setup predicts a violation of lepton-flavor universality (LFU) in neutral current interactions, while LFU is basically respected in charged currents, providing a natural and compelling explanation for the 2.6σ deviation observed by LHCb [9] in the very clean ratio $\frac{\mathcal{B}(B \rightarrow K\mu^+\mu^-)}{\mathcal{B}(B \rightarrow Ke^+e^-)}$.
where we have explicitly shown the decomposition under \(S U(2)_L \times S U(2)_R \cong S O(4) = \mathcal{H} \) (with the bidoublet being represented by a \(2 \times 2 \) matrix on which the \(S U(2)_L \) rotation acts vertically and the \(S U(2)_R \) one horizontally) and the signs in square brackets denote the boundary conditions at the UV and IR branes. A Dirichlet boundary condition for the RH/LH chirality is denoted by \([+/-]\), with LH/RH zero modes being present for fields with \([+,-][-,-]\) boundary conditions. Finally, since the lepton sector will produce an additional non-negligible contribution to the Higgs potential, we can consider for the quark sector the previously disregarded minimal model consisting of a fully composite \(t_R \) and a LH doublet \(q^T_L \) embedded in a \(5 \) of \(\mathcal{G} \). More specifically, we consider \(\xi_1^T \sim 5_{2/3}, \xi_2^T \sim 1_{2/3}, \xi_3^T \sim 5_{-1/3}, \xi_4^T \sim 1_{-1/3}, \ell = 1, 2, 3, \) or

\[
\xi_1^\ell = \left(\begin{array}{c}
\hat{A}^\ell[+, +] u_1^\ell[+, +] d_2^\ell[+, +] \\
\hat{A}^\ell[+, -] u_2^\ell[+, -] d_2^\ell[+, -] \end{array} \right) \theta^\ell[-, +],
\]

\[
\xi_2^\ell = \left(\begin{array}{c}
\hat{A}^\ell[-, +] u_1^\ell[-, +] d_2^\ell[-, +] \\
\hat{A}^\ell[-, -] u_2^\ell[-, -] d_2^\ell[-, -] \end{array} \right) \theta^\ell[+, -],
\]

\[
\xi_3^\ell = \left(\begin{array}{c}
\hat{A}^\ell[+, +] u_1^\ell[+, +] d_1^\ell[+, +] \\
\hat{A}^\ell[+, -] u_2^\ell[+, -] d_1^\ell[+, -] \end{array} \right) \theta^\ell[-, +],
\]

\[
\xi_4^\ell = \left(\begin{array}{c}
\hat{A}^\ell[-, +] u_1^\ell[-, +] d_1^\ell[-, +] \\
\hat{A}^\ell[-, -] u_2^\ell[-, -] d_1^\ell[-, -] \end{array} \right) \theta^\ell[+, -].
\]

This minimal realization of composite leptons naturally allows for a very strong flavor protection, requiring any lepton flavor violating (LFV) process to be mediated by extremely suppressed neutrino-mass insertions and leading in particular to the absence of dangerous FCNCs in the lepton sector to excellent approximation. To this end, we promote the accidental \(S U(3) \times S U(3)_2 \) flavor symmetry of the lepton sector in the decompactified or conformal limit (arising from the arbitrary rotation of \(\xi_1 \) and \(\xi_2 \) in the family space) to a \(5 \)D gauge group only broken at the UV brane (i.e., by the elementary sector) and the vacuum expectation value (vev) of some non-dynamical field \(\mathcal{Y} \). The bulk fields in the lepton sector will thus transform as \(\xi_1 \sim (3, 1) \) and \(\xi_2 \sim (1, 3) \), whereas \(\mathcal{Y} \sim (3, 3) \). Therefore, the corresponding bulk masses will be given by\(^2\)

\[
c_1 = \eta_1 + \rho_1 \mathcal{Y} \mathcal{Y}^t + \ldots, \quad c_2 = \eta_2 + \rho_2 \mathcal{Y} \mathcal{Y} + \ldots,
\]

whereas the IR brane masses will read

\[
a^4 \left[\omega_5 \xi_{2L}^4(1.1) \xi_{2R}^4(1.1) + \omega_7 \xi_{2L}^4(2.2) \xi_{2R}^4(2.2) \right] \bigg|_{IR} + \text{h.c.},
\]

\(^2\)The \(\ldots \) stand for subleading contributions \(\mathcal{Y} \mathcal{Y}^t \mathcal{Y} \mathcal{Y}^t \), \(\mathcal{Y} \mathcal{Y}^t \mathcal{Y} \mathcal{Y} \), \(\mathcal{Y} \mathcal{Y} \mathcal{Y} \mathcal{Y} \), \(\mathcal{Y} \mathcal{Y} \mathcal{Y} \mathcal{Y}^t \), which do not add additional flavor structure since they can all be made diagonal by \(\mathcal{Y} \).
with \(\eta_{1,2}, \rho_{1,2} \in \mathbb{R} \), \(\omega_{z, B} \in \mathbb{C} \), \(a(z) = R/z \) the warp factor, \(z \in [R, R'] \) the coordinate of the extra dimension and the superscripts (1, 1) and (2, 2) denoting the singlet and the bidoublet components of the corresponding multiplets. Since, as mentioned, the elementary sector represented by the UV brane does not respect in general this symmetry, one can have general Majorana masses

\[
\mathcal{L}_{UV} \supset -\frac{1}{2} M_{\nu}^2 \, \text{Tr} \left(\Sigma^\dagger \Sigma \right)_{\ell \to R} + \text{h.c.},
\]

where

\[
\Sigma_\ell = \begin{pmatrix} \gamma_2' / \sqrt{2} & 0 \\ 0 & -\gamma_2' / \sqrt{2} \end{pmatrix}, \quad \ell = e, \mu, \tau.
\]

Note that the fact of having just two \(S O(5) \) lepton multiplets and thus being able to use only one \(SU(3)_c \times SU(3)_c \) spurion, \(\mathcal{Y} \), allows us to diagonalize at the same time \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) via the rotation

\[
\zeta_1 \to U_1 \zeta_1, \quad \zeta_2 \to U_2 \zeta_2,
\]

where \(U_1 U_2 = \text{diag}(y_{ee}, y_{\mu\mu}, y_{\tau\tau}) \equiv y_{\ell\ell} \). In this particular basis, the whole Lagrangian will be flavor diagonal with the exception of the Majorana mass in \(\mathcal{L}_2 \), which becomes \(U_1^\dagger M^2 \Sigma U_2 \). Therefore, any potentially induced FCNC will be suppressed by large Majorana masses. Regarding the quark sector, we consider the more general case of arbitrary sources of flavor breaking, see [8] for more details.

3. EWSB, lepton non-universality and \(R_K \)

In order to make the discussion simpler, it will be useful in the following to use the language of the dual four dimensional (4D) strongly coupled theory. Very schematically, we consider an elementary sector, consisting of the would-be SM with the exception of the Higgs sector and the addition of the corresponding RH neutrinos \(\Sigma_\ell \) needed for the see-saw mechanism, and a composite sector mixing linearly with the elementary one. Focusing on the lepton sector, this mixing will be given by the following Lagrangian

\[
\mathcal{L}_{\text{mix}}^{\ell} = \sum_\ell \frac{\gamma^2_{\ell}}{\Lambda^2} I_{1\ell} O_{1\ell} + \sum_\ell \frac{\gamma^2_{\ell}}{\Lambda^2} \Psi_{1\ell} O_{1\ell} + \text{h.c.},
\]

where \(\Lambda = O(M_R) \) is the UV cut-off scale, \(\gamma^2_{\ell} = [O_{1\ell, R}] - 5/2 \) are the different anomalous dimensions, \(\gamma^2_{\ell} \) are order one dimensionless parameters and all RH leptons have been embedded in \(\Psi_{1\ell} \sim 14 \). Since we expect \(\gamma^2_{R} < 0 \) due to the size of the neutrino masses (since otherwise the elementary Majorana mass \(M_2 \sim \Lambda \) would generate too small neutrino masses \(\sim v^2/\Lambda \), \(\Psi_{1\ell} \)

will be rather composite and a large contribution to the \(\Psi_{1\ell} \) kinetic term will be generated at the scale \(\mu = O(\text{TeV}) \) where the conformal sector becomes strongly coupled,

\[
\frac{\lambda_2^2}{\Lambda^2} \int d^4 p \, d^4 q \, \Psi_{1R}(-p) O_{1R}(p) O_{1R}(-q) \Psi_{1R}(q)
\]

\[
\sim \delta_{\ell\ell} \lambda_2^2 \frac{\mu^2}{\Lambda^2} \int d^4 x \, \Psi_{1R}(x) \not\! \partial \Psi_{1R}(x).
\]

This leads, after canonical normalization, to the following expressions for the physical masses,

\[
\mathcal{M}_{\ell} \sim \delta_{\ell\ell} \epsilon_{\ell L} \mathcal{M}_m \sim v^2 \epsilon_{\ell L} \epsilon_{\ell R} (M_2^2)^{1/2} \epsilon_{\ell L} \epsilon_{\ell R}
\]

where \(v \) is the Higgs vev and we have defined \(\epsilon_{\ell L R} = \delta_{\ell R} \delta(\mu/\Lambda)^{y_{\ell\ell}} \). It is then clear that in order to have simultaneously hierarchical charged lepton masses and a non-hierarchical neutrino mass matrix one needs

\[
\epsilon_{\ell L} \ll \epsilon_{\ell R} \ll \epsilon_{\ell T} \ll 1 \quad \text{and} \quad \epsilon_{\ell L} \epsilon_{\ell R} \sim \text{constant}
\]

and thus

\[
0 \ll \epsilon_{\ell R} \ll \epsilon_{\ell L R} \ll \epsilon_{\ell R}.
\]

This has several interesting consequences. First of all, since the degree of compositeness of RH leptons is non-negligable and their contribution to the Higgs quartic scale with \(\delta_{\ell R} \), instead of the usual \(\delta_{\ell R} \) for smaller representations of \(O_{1R} \), leptons give a sizable contribution to the Higgs potential. As already mentioned, this is interesting since it allows to replace the role of \(t_R \) in EWSB, making possible for \(t_R \) to cancel the \(b^2 \) contribution with a moderate value of \(\epsilon_{\ell R} \) such as to generate a viable potential. Along the same lines, the lepton contribution can provide a negative correction to \(m_H \), which in turn allows bigger masses for the top partners (which otherwise would drive \(m_H \) too large [8]). In order to get a more quantitative idea of the impact of the lepton sector on the Higgs potential and the Higgs mass, we show in Figure 1 the mass of the lightest top partner versus the Higgs mass evaluated at the composite scale \(O(f_{\ell R}) \), with \(f_{\ell R} = 1 \text{TeV} \) and the yellow band corresponding to the high-scale value of the actual Higgs mass \(m_H(f_{\ell R}) = 105 \text{GeV} (1 \pm 7.5\%) \), after accounting for the uncertainties of the running in a conservative way. We also display the Barbieri-Giudice (BG) measure of the tuning \(\Delta_{\text{BG}} \), through the color of each point in the \(m_{H} - m_{\min}^{3/2} \) plane. We can see from the figure that
top-partner masses up to 5 TeV are allowed with a more than reasonable amount of tuning.

Secondly, since different RH leptons exhibit a different degree of compositeness, see eq. (13), diagrams with a tree-level exchange of neutral heavy vector resonances like the ones schematically depicted in Figure 2 will lead to a violation of LFU. In particular, they will lead to four-fermions operators

\[cO \sim c(\bar{\psi}_2\gamma_\mu \psi_1)(\bar{\chi}_2\gamma^\mu \chi_1), \quad c \sim \epsilon_3 \epsilon_4 \epsilon_1 \epsilon_5 / f_\pi^2, \quad (14) \]

that, besides flavor, will be relevant also for electroweak precision data (EWPD).

Figure 2: Relevant diagrams for the generation of four-fermion operators.

According to eq. (13), the most important of these operators regarding EWPD will be \(O_{ce} = (\epsilon_3 \gamma_\mu \epsilon_4)(\epsilon_3 \gamma_\mu \epsilon_4)/2 \), whose Wilson coefficient \(c_{ee} \) is constrained to be \(c_{ee} \in 4G_F / \sqrt{2} \cdot [1.8, +2.8] \cdot 10^{-3} \) at 95% C.L. [29]. We present in Figure 3 the value of \(c_{ee} \) as a function of \(f_\pi \), where the blue curve corresponds to the best fit to the data. We also show the 95% C.L. upper bound on \(c_{ee} \) by a yellow line. One can see from this plot that values of \(f_\pi \gtrsim 1 \) TeV give already a reasonable agreement with the data, while for \(f_\pi \gtrsim 1.2 \) TeV the EWPD impose no significant constraint. Therefore, in order to provide a conservative assessment of the flavor predictions of the model, we consider \(f_\pi = 1.2 \) TeV henceforth.

Concerning flavor, the most relevant operators will be

\[O_{qe}^{32\ell\ell} = (\bar{q}_L^3 Y_3 q_3^\ell)(\bar{f}_R^{Y_3} e_3^\ell), \quad (15) \]
\[O_{q1}^{31} = (\bar{q}_L^3 Y_3 q_1)(\bar{f}_R^{Y_3} e_1^3), \quad (16) \]

where the first of them will provide the leading contribution to \(R_K \) and we expect the latter to appear unavoidably if we generate the first one. Instead of performing a complete flavor analysis of the quark sector, we prefer to focus on the possible correlations between \(B_L - B_S \) mixing and \(R_K \). On the other hand, note already that a large class of potentially dangerous constraints, coming from limits on LFU violation in charged current interactions, mediating e.g. \(K, \pi \), and \(\mu \) decays [30, 31], is fulfilled in this model by construction. In fact, the LH charged current \(\bar{t}_L Y_T t_1^R \) is mostly elementary and the light neutrino mass eigenstates contain only a negligible amount of RH fields. Thus, charged currents respect LFU to excellent approximation.

We evaluate \(R_K \) by computing the Wilson coefficients...
4. Conclusions

Flavor physics provides a superb tool for probing physics beyond the SM. It is therefore far from being a surprise that so much excitement has been raised by the B-physics anomalies observed both in the charged and the neutral currents. From all of them, R_K stands out particularly since it provides a very clean probe of lepton flavor non-universality, only produced at the loop level in the SM. While there are plenty of models on the market explaining the latter, there are only a few of them which could be motivated from an UV perspective. In these proceedings, we have discussed a model where the observed deviation in R_K can be explained naturally within the context of composite Higgs setups, offering a beautiful link between naturalness and the violation of LFU. What is more, this can be achieved in a completely flavor-safe way, avoiding potentially dangerous FCNCs in the lepton sector, while alleviating at the same time the necessity of ultra-light top partners. Therefore, if confirmed, the final observation of violation of LFU could provide an unexpected first probe of the dynamics solving the hierarchy problem.

Acknowledgments. The research of A.C. has been supported by a Marie Skłodowska-Curie Individual Fellowship of the European Community’s Horizon 2020 Framework Programme for Research and Innovation under contract number 659239 (NP4theLHC14). The research of F.G. is supported by a Marie Curie Intra European Fellowship within the EU FP7 (grant no. PIEF- GA-2013-628224).

References

![Figure 4: Value of $|c^{B_j}(m_{B_j})|$ versus R_K for points reproducing the Higgs mass and within 2σ from $B_s \rightarrow \mu^+\mu^-$, for $f_\pi = 1.2$ TeV. The blue box marks the allowed values of R_K and $|c^{B_j}|$ at 95% C.L.](image)

[23] A. Crivellin, G. D’Ambrosio, J. Heeck, Explaining $h \rightarrow \mu^+ \mu^−$, $B \rightarrow K^μ\mu^−$ and $B \rightarrow K^\tau\tau^−$ in a two-Higgs-doublet model with gauge $L_\mu − L_\tau$, Phys.Rev.Lett. 114 (2015) 151801.

[28] J. Virto, Phenomenology of an $U(2) \times U(2) \times U(1)$ model with lepton-flavour non-universality, arXiv:1608.01345.

[34] V. Khachatryan, et al., Observation of the rare $B^0_s \rightarrow \mu^+ \mu^−$ decay from the combined analysis of CMS and LHCb data, Nature 522 (2015) 68–72. arXiv:1411.4413.