CP violation in heavy baryons: experimental results and prospects

Nicola Neri

on behalf of the LHCb collaboration

INFN - Sezione di Milano

Implications of LHCb measurements and future prospect
CERN, 12-14 October 2016
Outline

- CP violation in heavy baryon decays
- Experimental issues
- Experimental results
- Summary
CP violation in heavy baryon decays
Physics motivations

- At LHCb b-baryons are collected in unprecedented quantities → opens a new field in flavour physics for precision measurements

- CP violation (CPV) in b-baryons:
 - CKM mechanism predicts sizeable amount of CPV in b-baryons that can be precisely measured
 - complementary means to test Standard Model (SM) with respect to B mesons
 - opportunities to search for new sources of CPV

- CPV in c-baryons:
 - null test for SM
CPV in \(b \)-hadrons

- Same underlying short distance physics for \(b \)-baryons and \(B \) mesons but with different spin and QCD structure

\[
\Lambda_b^0 \rightarrow p\pi^- \\
B_d^0 \rightarrow \pi^+\pi^-
\]

- Systematic study of CPV in \(b \)-baryons and in \(B \) mesons for a stringent test of CKM mechanism
CKM angle γ using Λ_b decays

- Extract γ from BR of $\Lambda_b^0 \rightarrow \Lambda D^0$, $\Lambda_b^0 \rightarrow \Lambda \bar{D}^0$, $\Lambda_b^0 \rightarrow \Lambda D_{CP}^0$

 and charge conjugate decays à la GLW

- Theory clean measurement of γ using baryons

- Small yields $BR = (\Lambda_b^0 \rightarrow \Lambda D^0) \sim 4 \cdot 10^{-6}$, $BR = (\Lambda_b^0 \rightarrow \Lambda \bar{D}^0) \sim 8 \cdot 10^{-7}$

- Use $\Lambda_b^0 \rightarrow D^0 pK^-$ for improved reco efficiency

Search for CPV in charm baryons

I. I. Bigi, arXiv:1206.4554

- Null test for SM, sensitive to new physics effects
- CPV predictions for singly-Cabibbo suppressed (SCS) modes $\mathcal{O}(10^{-4})$ or less for doubly CS decays

$$\Lambda_c^+ \to p\pi^-\pi^+ \quad \Lambda_c^+ \to pK^-K^+$$

- Large samples allow probe for localised CPV in differential distributions for enhanced sensitivity. Signal events for SCS modes $\sim 10^5$ in RunI (3fb$^{-1}$)
Experimental issues
Particle-antiparticle production asymmetry

- Initial \(pp \) state not \(CP \) symmetric \(\rightarrow \) particle/antiparticle production asymmetries \(A_P \sim 1\% \)

- Initial asymmetry could mimic CPV and needs to be disentangled or measured

\[A_P(B^0) = (-0.35 \pm 0.76 \pm 0.28)\%, \quad A_{prod}(D^+_s) = (-0.33 \pm 0.13 \pm 0.18 \pm 0.10)\% \]
\[A_P(B^0_s) = (1.09 \pm 2.61 \pm 0.66)\%, \quad A_{prod}(D^+) = (-0.96 \pm 0.19 \pm 0.18 \pm 0.18)\% \]

- Next step, measure \(A_P(B^+) \) and obtain \(A_P(\Lambda^0_b) \) by means of a unitary relation

- Similarly in charm for \(D^0 \) and \(\Lambda^+_c \). \(A_P \) more relevant when probing small CPV asymmetries in charm
Detector reconstruction asymmetries

- Detector is made of matter, not CP symmetric
 → particle/antiparticle detection asymmetries
 \[A_D(\pi^\pm) \sim 0.1\% \quad A_D(K^\pm) \sim 1\% \quad A_D(p/\bar{p}) \sim 1 - 2\% \]

- \(A_D \) can be measured using “ad hoc” abundant control samples, see
 Physics Rev. Lett. 110 (2013) 221601

- B field inversion is crucial to keep charged particle tracking asymmetries under control at \(10^{-4} \) level
Experimental approaches

- Measure ΔA_{CP} difference of CP asymmetries:

$$A_{raw}(\Lambda_b^0 \to J/\psi p\phi^-) = A_{CP}(\Lambda_b^0 \to J/\psi p\phi^-) + A_{prod}(\Lambda_b^0) - A_{reco}(h^+) + A_{reco}(p)$$

$$\Delta A_{CP} = A_{raw}(\Lambda_b^0 \to J/\psi p\pi^-) - A_{raw}(\Lambda_b^0 \to J/\psi pK^-)$$

$$= A_{CP}(\Lambda_b^0 \to J/\psi p\pi^-) - A_{CP}(\Lambda_b^0 \to J/\psi pK^-) + A_{reco}(\pi^+) - A_{reco}(K^+)$$

Cancel A_{prod} and $A_{reco}(p)$

Measured on data

$\Delta A_{CP} = (5.7 \pm 2.4 \pm 1.2)\%$

2.2σ from zero

$L_{int} = 3 \text{ fb}^{-1}$
Experimental approaches

- Measure CPV via (\hat{T}^{-}) P-violating asymmetries:

$$C_{\hat{T}} = \vec{p}_{p} \cdot (\vec{p}_{h_{1}}^{-} \times \vec{p}_{h_{2}}^{+}) \quad \bar{C}_{\hat{T}} = \vec{p}_{p} \cdot (\vec{p}_{h_{1}}^{+} \times \vec{p}_{h_{2}}^{-})$$

$$A_{\hat{T}}(C_{\hat{T}}) = \frac{N(C_{\hat{T}} > 0) - N(C_{\hat{T}} < 0)}{N(C_{\hat{T}} > 0) + N(C_{\hat{T}} < 0)}, \text{ for } \Lambda_{b}^{0}$$

$$\bar{A}_{\hat{T}}(\bar{C}_{\hat{T}}) = \frac{\bar{N}(\bar{C}_{\hat{T}} > 0) - \bar{N}(\bar{C}_{\hat{T}} < 0)}{\bar{N}(\bar{C}_{\hat{T}} > 0) + \bar{N}(\bar{C}_{\hat{T}} < 0)}, \text{ for } \bar{\Lambda}_{b}^{0}$$

Largely insensitive to A_{prod} and A_{reco}

- Complementary approach to A_{CP} analysis

$$a_{CP}^{\hat{T}\text{-odd}} \propto \cos(\delta_{\text{even}} - \delta_{\text{odd}}) \sin(\varphi_{\text{even}} - \varphi_{\text{odd}})$$

not sensitive if $\delta_{\text{even}} - \delta_{\text{odd}} = \pi/2$ or $3\pi/2$

$$A_{CP} \propto \sin(\delta_{1} - \delta_{2}) \sin(\varphi_{1} - \varphi_{2})$$

not sensitive if $\delta_{1} - \delta_{2} = 0$ or π

More in G. Durieux talk at this workshop
Experimental results
CPV in $\Lambda_b^0 \rightarrow p\pi^-$ and $\Lambda_b^0 \rightarrow pK^-$

$\Lambda_b^0 \rightarrow pK^- \ 8,600 \text{ signal events}$

$\Lambda_b^0 \rightarrow p\pi^- \ 6,000 \text{ signal events}$

- Present sensitivity to CPV at $1 \cdot 10^{-2}$ level
- No irreducible systematic uncertainties identified so far
- Naive projections to 300 fb^{-1} (assume 200x signal): $1 \cdot 10^{-3}$ precision on CPV asymmetries
CPV in 4-body charmless decays

- Transitions governed by $b \rightarrow u\bar{d}\bar{u}$ tree and $b \rightarrow d\bar{u}\bar{u}$ penguin amplitudes of similar magnitude. Large relative weak phase in SM from CKM elements, $\arg(V_{tb}V_{td}^*/V_{ub}V_{ud}^*) = \alpha$

- Potential non negligible CPV effects in the SM

Tree diagram $\propto V_{ub} \sim \lambda^3$

Penguin diagram $\propto \sum_{x=u,c,t} V_{bx} V_{xd} \sim \lambda^3$

I.I. Bigi, arXiv:1608.06528
CPV in $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-$ decays

- Search for localised CPV effects, enhanced sensitivity
- Use 4-body topology to build P-violating asymmetries

$N_{\text{sig}}(p\pi^-\pi^+\pi^-) = 6646 \pm 105$

$L_{\text{int}} = 3 \text{ fb}^{-1}$

- P-odd, \hat{T}-odd triple products:

$$C_{\hat{T}} = \vec{p}_p \cdot (\vec{p}_{h_1^-} \times \vec{p}_{h_2^+}) \propto \sin \Phi, \text{ for } \Lambda_b^0$$

$$\bar{C}_{\hat{T}} = \vec{p}_{\bar{p}} \cdot (\vec{p}_{\bar{h}_1^+} \times \vec{p}_{\bar{h}_2^-}) \propto \sin \bar{\Phi}, \text{ for } \bar{\Lambda}_b^0$$
First evidence for CP violation in baryons

Very low systematic uncertainties. Sensitivity expected to scale with statistics i.e. 10^{-3} precision on CPV at 300 fb$^{-1}$

CPV predictions, at least for some regions of phase space, very welcome

G. Durieux, arXiv:1608.03288
Towards the measurement of γ

$$\Lambda_b^0 \to D^0 pK^- \quad \text{sig} = 163 \pm 18$$

$$\mathcal{L}_{int} = 1 \text{fb}^{-1}$$

- Interesting decay modes for the future $\text{BR} = (4.8 \pm 0.9) \times 10^{-5}$
- Expect 100k $D^0 pK^-$, 20k $\bar{D}^0 pK^-$, 16k $D_{CP} pK^-$ signal events with 300 fb$^{-1}$
- $D^0 \to K^- \pi^+$; $D_{CP}^0 \to \pi^+ \pi^-, K^+ K^-$
- Hard to estimate the impact on γ determination at present
Search for CPV in $\Lambda_b^0 \rightarrow K_s^0 p\pi^-$

- Large $A_{CP}(pK^{*-}) \sim 20\%$ predicted in SM

 \[A_{CP} = 0.22 \pm 0.13 \pm 0.03 \]

 use $\Lambda_b^0 \rightarrow (K_s^0 p)_{\Lambda_c^+} \pi^-$ as control mode

 - Precision on CPV at $5 \cdot 10^{-3}$ is achievable with 300 fb$^{-1}$

 - Other interesting results: $\Lambda_b^0 \rightarrow \Lambda h^+ h^-, \Lambda_b^0 \rightarrow \Lambda\phi$ decays
charmless decays

- First observation of several decay modes
- Search for CPV in Ξ_b decays is next step

$\Xi_b^0 \rightarrow p\pi^+ K^- K^-$

$N_{\text{sig}} = 709 \pm 45$

$\Xi_b^- \rightarrow pK^- K^-$

$N_{\text{sig}} = 83 \pm 10$

not published yet

LHCb unofficial

$L_{\text{int}} = 3 \text{ fb}^{-1}$

LHCb-ANA-2014-077

LHCb-ANA-2014-087
In 2016 collected almost twice b-baryon signal yields wrt Run1

Possibility to increase yields x30 UpgradeI and x200 UpgradeII
Summary

• LHCb opens a new window to search for CPV in baryon decays. Many b-baryon decays observed for the first time

• Evidence for CPV found in $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-$ decays with a statistical significance of 3.3σ. This represents the first evidence for CPV in baryon sector. Eagerly looking for a 5σ observation.

• CPV searches ongoing in several b-baryon decays. Next step, amplitude analysis to determine source of CPV. Important effort needed for development of phenomenological models

• At high luminosity 300fb^{-1} reach 10^{-3} precision on CPV in several b-baryon decays. Systematic study of CPV in baryons, angle γ

• Theoretical predictions for CPV in b-baryon decays are needed to confront with precision measurements
Backup slides
Explore purely baryonic decays

- No such type of decay has ever been observed
- Prediction $\mathcal{B}(\Lambda_b^0 \to p\bar{p}n) = (2.0^{+0.3}_{-0.2}) \times 10^{-6}$
- Other modes $\Lambda_b^0 \to p\bar{p}\Lambda$ $\Lambda_b^0 \to \Lambda\bar{\Lambda}\Lambda$

Dibaryon invariant mass spectra prediction

![Diagram showing dibaryon invariant mass spectra prediction.](image-url)
Observation of $\Lambda_b^0 \rightarrow J/\psi p\pi^-$ decay

- Large interference between tree and penguin amplitudes.
 Measure relative BR wrt $\Lambda_b^0 \rightarrow J/\psi pK^-$ and search for CPV.

$\Lambda_b^0 \rightarrow J/\psi p\pi^-$ tree $\propto V_{cb} V_{cd} \sim \lambda^3$

$\Lambda_b^0 \rightarrow J/\psi p\pi^-$ penguin $\propto V_{tb} V_{td} \sim \lambda^3$ ($|V_{us}| = \lambda$)

$\Lambda_b^0 \rightarrow J/\psi p\pi^-$

\[m_{J/\psi p\pi} \text{ [MeV/c}^2\text{]} \]

LHCb

$\Lambda_b^0 \rightarrow J/\psi pK^-$

\[m_{J/\psi pK} \text{ [MeV/c}^2\text{]} \]

LHCb
Search for CP violation

- Measurement of ΔA_{CP} cancel production and proton reconstruction asymmetries

$$A_{\text{raw}}(\Lambda_b^0 \to J/\psi p h^-) = A_{CP}(\Lambda_b^0 \to J/\psi p h^-) + A_{\text{prod}}(\Lambda_b^0) - A_{\text{reco}}(h^+) + A_{\text{reco}}(p)$$

$$\Delta A_{CP} = A_{\text{raw}}(\Lambda_b^0 \to J/\psi p \pi^-) - A_{\text{raw}}(\Lambda_b^0 \to J/\psi p K^-)$$

$$= A_{CP}(\Lambda_b^0 \to J/\psi p \pi^-) - A_{CP}(\Lambda_b^0 \to J/\psi p K^-) + A_{\text{reco}}(\pi^+) - A_{\text{reco}}(K^+)$$

$$= (5.7 \pm 2.4 \pm 1.2)\% \ 2.2\sigma \text{ from zero}$$

- No indications of large local CP asymmetries in Dalitz plane

- Rich resonant structure in $m(p\pi^-)$, and 2 pentaquark in $m(J/\psi p)$ distributions

- BR compatible with expected value 0.08: CKM x phase space factor

$$\frac{\mathcal{B}(\Lambda_b^0 \to J/\psi p \pi^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)} = 0.0824 \pm 0.0025 \text{ (stat)} \pm 0.0042 \text{ (syst)}$$
Search for CPV in $\Lambda_b^0 \rightarrow \Lambda h^+ h'^- \text{ decays}$

Tree diagram $\propto V_{ub} \sim \lambda^3$

Penguin diagram $\propto \sum_{x=u,c,t} V_{bx} V_{xd} \sim \lambda^3$

JHEP 05 (2016) 081
Signal yields

- First observation of $\Lambda_b^0 \rightarrow \Lambda K^\pm \pi^\mp$ and $\Lambda_b^0 \rightarrow \Lambda K^+ K^-$

$$N_{\text{sig}}(\Lambda K^\pm \pi^\mp) = 97 \pm 14, \ 8.1\sigma$$

$$N_{\text{sig}}(\Lambda K^+ K^-) = 185 \pm 15, \ 15.8\sigma$$
Signal yields

- Evidence of $\Lambda_b^0 \to \Lambda\pi^+\pi^-$, control model $\Lambda_b^0 \to (\Lambda\pi^+)\Lambda_c^+\pi^-$ selected from $\Lambda_b^0 \to \Lambda\pi^+\pi^-$ phase space.
- No evidence of any $\Xi_b^0 \to \Lambda h^+ h'$

$N_{\text{control}}(\Lambda_c^+\pi^-) = 471 \pm 22$

$N_{\text{sig}}(\Lambda\pi^+\pi^-) = 64 \pm 14, \ 4.7 \sigma$
Search for CPV using triple-product asymmetries in $\Lambda_b^0 \rightarrow \Lambda \phi$

$b \rightarrow s\bar{s}s$ transition has been the subject of theoretical and experimental interest in B^0, B_s decays, since new physics in the loop could induce non-SM CPV
Signal yields

- First observation

\[N_{\text{sig}}(\Lambda_b^0 \to \Lambda \phi) = 89 \pm 13, \quad 5.9\sigma \]
Triple-product asymmetries

5 angles describe decay, considering Λ_b^0 possibly produced with a transverse polarisation

θ_Λ: polar angle of p in Λ rest frame
θ_ϕ: polar angle of K^+ in ϕ rest frame
Φ_1: angle between \hat{n} and \hat{n}_Λ
Φ_2: angle between \hat{n} and \hat{n}_ϕ
θ: polar angle of Λ in Λ_b^0 rest frame w.r.t. \hat{n}
Triple-product asymmetries

\[\hat{n}_\Lambda \]

\[\vec{u}_i = \frac{\vec{e}_Z \times \hat{n}_i}{|\vec{e}_Z \times \hat{n}_i|} \quad i \in \{\Lambda, \phi\} \]

triple products:

\[\cos \Phi_{n_i} = \vec{e}_Y \cdot \vec{u}_i \]
\[\sin \Phi_{n_i} = \vec{e}_Z \cdot (\vec{e}_Y \times \vec{u}_i) \]

CPV observables, untagged sample:

\[A^c_i = \frac{N_i(\cos \Phi_{n_i} > 0) - N_i(\cos \Phi_{n_i} < 0)}{N_i(\cos \Phi_{n_i} > 0) + N_i(\cos \Phi_{n_i} < 0)} \]
\[A^s_i = \frac{N_i(\sin \Phi_{n_i} > 0) - N_i(\sin \Phi_{n_i} < 0)}{N_i(\sin \Phi_{n_i} > 0) + N_i(\sin \Phi_{n_i} < 0)} \]

Results

\[\hat{n}_\Lambda \]

\[\hat{n}_\phi \]

\[\vec{e}_X \]

\[\vec{e}_Y \]

\[\vec{e}_Z \]

\[\Lambda_b \]

\[p \]

\[\pi^- \]

\[\Lambda \]

\[\theta_\Lambda \]

\[\Phi_1 \]

\[\theta \]

\[\Phi_2 \]

\[K^+ \]

\[K^- \]

\[p \]

\[\hat{n} \]

\[A_s^\Lambda = 0.13 \pm 0.12 \pm 0.05 \]

\[A_c^\Lambda = -0.22 \pm 0.12 \pm 0.06 \]

\[A_s^\phi = -0.07 \pm 0.12 \pm 0.01 \]

\[A_c^\phi = -0.01 \pm 0.12 \pm 0.03 \]

Consistent with CP symmetry

See G. Durieux, arXiv:1608.03288

a simultaneous unbinned
maximum likelihood fit to the
datasets with positive or
negative triple products

Consistent with CP symmetry
Asymmetry measurements

\[\mathcal{A}_{\text{raw}}^{CP} = \frac{N_f^{\text{corr}} - N_{\bar{f}}^{\text{corr}}}{N_f^{\text{corr}} + N_{\bar{f}}^{\text{corr}}} \]

\(N_f^{\text{corr}}(N_{\bar{f}}^{\text{corr}}) \): efficiency-corrected yield for \(\Lambda_b^0(\overline{\Lambda}_b^0) \) decays, since efficiencies various across phase space.

\[\mathcal{A}_{CP} = \mathcal{A}_{\text{raw}}^{CP} - (\mathcal{A}_P + \mathcal{A}_D) \]

\[= \mathcal{A}_{\text{raw}}^{CP}(\Lambda_b^0 \rightarrow \Lambda h^+ h^-) - \mathcal{A}_{\text{raw}}^{CP}(\Lambda_b^0 \rightarrow (\Lambda\pi^+)\Lambda_c^+\pi^-) \]

Use \(\Lambda_b^0 \rightarrow (\Lambda\pi^+)\Lambda_c^+\pi^- \) as control model:

negligible CPV effect, production asymmetry \(\mathcal{A}_P \) and most detection asymmetry \(\mathcal{A}_D \) cancel

\[\mathcal{A}_{CP}(\Lambda_b^0 \rightarrow \Lambda K^+\pi^-) = -0.53 \pm 0.23 \pm 0.11 \]

\[\mathcal{A}_{CP}(\Lambda_b^0 \rightarrow \Lambda K^+K^-) = -0.28 \pm 0.10 \pm 0.07 \]
\[\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^- \] phase space distributions

background-subtracted using the sPlot method
b-baryon production

- Production cross-section strongly depends on p_T of b-hadron:

 - different b-quark fragmentation function ratio $f_{\Lambda_b^0}/f_d$ measured at LEP and at LHC, where $f_{\Lambda_b^0} = P(b \rightarrow \Lambda_b^0)$ and $f_d = P(b \rightarrow B_d^0)$

 - measurement of $f_{\Lambda_b^0}/f_d$ vs p_T of b-quark is cleaner to interpret. Expected a slow dependence in that case

Note: LEP average not included in the fit. LHCb measurements are not independent.
Production kinematic dependence

- Use clean $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$ (45K), $\bar{B}^0 \rightarrow D^+ \pi^-$ (106K) exclusive decays to measure dependance of $f_{\Lambda_b^0}/f_d$ on b-hadron kinematics, e.g. p_T, pseudorapidity η.

- Measure

$$\frac{f_{\Lambda_b^0}(x)}{f_d(x)} = \frac{B(\bar{B}^0 \rightarrow D^+ \pi^-)}{B(\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-)} \times \frac{B(D^+ \rightarrow K^- \pi^+ \pi^+)}{B(\Lambda_c^+ \rightarrow pK^- \pi^+)} \times R(x)$$

where

$$R(x) \equiv \frac{N_{\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-}(x)}{N_{\bar{B}^0 \rightarrow D^+ \pi^-}(x)} \times \frac{\epsilon_{\bar{B}^0 \rightarrow D^+ \pi^-}(x)}{\epsilon_{\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-}(x)},$$

and $x = p_T, \eta$

Data sample 1fb$^{-1}$ at 7 TeV - JHEP08(2014)143

\[\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-, \quad 3.05 < \eta < 3.2 \]
Production kinematic dependence

- Absolute value of $f_{\Lambda_b^0} / f_d$ from LHCb semileptonic analysis

 - obtain most precise branching ratio measurement of b-baryon to date (8% precision)

\[\mathcal{B}(\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-) = \left(4.30 \pm 0.03 ^{+0.12}_{-0.11} \pm 0.26 \pm 0.21 \right) \times 10^{-3} \]

(a) LHCb

Exponential dependence vs p_T

(b) LHCb

Linear dependence vs η
Λ_b^0 production cross-section

- Measurement of differential production cross-section for Λ_b^0 using $\Lambda_b^0 \rightarrow J/\psi \Lambda$ decays with $J/\psi \rightarrow \mu^+ \mu^-$, $\Lambda \rightarrow p\pi^-$

PLB 714 (2012) 136–157

- p_T distribution falls faster than measured b-mesons spectra and than predicted spectra from NLO MC **POWHEG** and leading-order MC **PYTHIA**

- Cross-section ratio $\sigma(\Lambda_b^0)/\sigma(\Lambda_b^0)$ consistent with 1 and constant vs p_T, and rapidity $|y|$
Λ^0_b polarisation

- Polarisation measurements from LHCb are consistent with zero:

\[
P(\Lambda^0_b) = 0.06 \pm 0.07 \pm 0.02 \quad \text{Phys.Lett.B 724 (2013) 27}
\]
\[
P(\Lambda^0_b) = (-0.2 \pm 2.3)\% \quad \text{Phys.Rev.Lett 115 (2015) 072001}
\]

- Effect of Λ^0_b polarisation estimated to be negligible on CPV asymmetries

\[
\text{JHEP 04 (2014) 087} \quad \text{JHEP 1407 (2014) 103}
\]

- Effect studied using MC sample polarised at generation level and control samples
Parity violation in $\Lambda_b^0 \rightarrow J/\psi \Lambda$

- Parity violation is not maximal in hadron weak decays and depends on hadron constituents. In b-baryons can be predicted by perturbative QCD (pQCD) and heavy quark effective theory (HQET).

\[w(\cos \theta) = \frac{1}{2} \left(1 + \alpha P \cos \theta \right) \]

- Λ_b^0 polarisation allowed only to be perpendicular to production plane, due to parity conservation in pp strong interaction.

- Use 4 helicity amplitudes to describe the $\Lambda_b^0 \rightarrow J/\psi \Lambda$ decay.

\[A(\lambda_\Lambda, \lambda_{J/\psi}) : a_+ = A(1/2, 0), a_- = A(-1/2, 0), \]
\[b_+ = A(-1/2, -1), b_- = A(1/2, 1) \]
Parity violation results

- <P>=0 in a symmetric interval in pseudorapidity
- Assume CP conservation and extract α from a simplified angular analysis with 5 independent parameters

\[\alpha = |a_+|^2 - |a_-|^2 + |b_+|^2 - |b_-|^2 \]

\[= 0.30 \pm 0.16 \pm 0.06 \]

- Consistent with LHCb measurement
 \[\alpha = 0.05 \pm 0.17 \pm 0.07 \]
 but not with pQCD [-0.17,-0.14] and HQET predictions 0.78
- LHCb measured \(P = 0.06 \pm 0.07 \pm 0.02 \)
LHCB tracking system

TT: 500µm thick, single sided Si strip detector, pitch~100-200µm, vertical and stereo angle strips arrangement (x-u-v-x)=(0°,-5°,+5°,0°)
Ghost track = is a fake track. For example it can be formed by matching a real track segment in the VELO (VELO seed) with a real track segment in the downstream tracker (T seed)