The new detector readout system for the ATLAS experiment

Soo Ryu
Argonne National Laboratory

On behalf of the ATLAS Collaboration
ATLAS DAQ for LHC Run2 (2015-2018)

- Custom hardware and link protocol are used for the frontend readout
- Single dedicated link is needed for each detector channel
- Trigger and LHC clock are given to both front-end and ReadOut Driver

For the next upgrade, introduce more COTS close to the FE
FELIX will be interfaced to the new muon detector and calorimeter trigger electronics (Run3, 2020)

What FELIX can do

Bidirectional Data multiplexing (multiple FEs and multiple network hosts)
Provisioning of trigger information and LHC clock

FELIX routes the data between FE and network hosts
FELIX hardware platform

TTC FMC

Optical Links 24-48 ch, 4.8 or 9.6 Gb/s

FPGA firmware

FELIX PCIe card

Memory

buffer

buffer

buffer

FELIX Host PC

CPU

DMA

MSI-X

Device Driver

NIC

Optical Link 2-4 40Gb/s ports

PCIe card with FPGA chip + Host PC + NIC

TTC (Timing, Trigger and Control) : LHC protocol used to distribute global clock (40.08MHz) and Level 1 trigger information
FELIX hardware components: Development

FELIX PCIe card

TTC FMC

Optical Links 24-48 ch, 4.8 or 9.6 Gb/s

FPGA firmware

FELIX Host PC

Memory

buffer

buffer

buffer

CPU

DMA

MSI

Device Driver

NIC

Optical Link 2-4 40Gb/s ports

PCIe Gen3 64 Gb/s

PCIe Gen3 64 Gb/s

TTCfx

Custom FMC with TTC input
ver1: ADN2814 + CDCE62005
ver2: ADN2814 + Si5338

FLX-710: HiTech Global HTG-710

Virtex-7 X690T
2 CXP connectors: 24 Ch
PCIe Gen3 x8

FLX-709: Xilinx VC-709

Intended for FE developers
Virtex-7 X690T
4 SPF+ connectors
PCIe Gen3 x8
FELIX hardware components: Production Candidate

FELIX PCIe card
- TTC FMC
- Optical Links 24-48 ch, 4.8 or 9.6 Gb/s
- FPGA firmware

FELIX Host PC
- Memory
 - buffer
 - buffer
 - buffer
- CPU
 - DMA
 - MSI-X
 - Device Driver
- NIC
 - Optical Link 2-4 40Gb/s ports
- PCIe Gen3 64 Gb/s

FLX-711 from BNL
- TTC input ADN2814 + Si5338
- Xilinx Kintex Ultrascale XCKU115
- 48 duplex optical links
- PCIe Gen3 x16
FELIX firmware design

Available upto 8 GBT links
Fixed latency transmission to FE using LHC clock
Maximum PCIe throughput to the host PC (~63 Gb/s)

Decoding TTC information and LHC clock recovering
Data routing using E-Link

Optical Link Transceiver using GBT protocol
Two link modes: GBT-frame mode, Full mode

E-Link: data multiplexing protocol designed for ATLAS
FELIX software

- FELIX Core Application
 Data processing pipeline from(to) the PCIe DMA buffer to(from) the NIC
 • NetIO is used for data exchanging with network hosts. abstracts the low level network implementation. POSIX and Infiniband backends are supported
 More details on: High-Speed Network Communication with NETIO

- Device Driver and API

- Various types of user tool sets are developed in order to test the FELIX firmware functionalities
FELIX data flow : Front End ➔ Host

Data Routing in FELIX firmware:
Data from multiple GBT link are multiplexed to the PCIe buffer.

Due to fixed size of pcie block, data streams are broken.

- **Front End**
 - GBTx/GBT-FPGA
 - Data streams from multiple channels

- **FELIX PCIe card**
- **FELIX Driver**
- **FELIX core Software**
- **NIC**
- **COT network switch**

- **Calibration**
- **DCS**
- **Monitor/Config**
- **Event Readout**

- **SOP**
- **SID**
- **8b10b**
- **CHK**
- **EOP**

Size of data stream can vary.

Restore data stream

Standard network packet
Data route for calibration, configuration, control and monitoring of detector and FE
FELIX TTC flow: To Front-End and To Host

10 bits of TTC information for each GBT link
GBT-frame mode only (4.8 Gb/s)
Fixed Latency data transmission

20 bytes of TTC information to the network hosts

Fixed Latency data transmission
FELIX PCIe card and Front-end are in the same clock domain
FELIX integration test with frontends

- LAr Calorimeter readout (April 2016, LDTB)
 Successful TTC distribution and control and monitoring

- Pixel detector readout (August 2016, CaRIBOu)
 Test under the beam condition
 Successful data taking in GBT-frame mode (4.8 Gb/s)
Summary and prospects

- FELIX is a future interface to the ATLAS detector readout
 Interface to the new muon and calorimeter trigger electronics in LHC Run 3 (2020)
 Interface to the All detector readout (2026)
- As most of features are implemented and tested, FELIX is ready to be used for front-end users
 Ongoing efforts: adding more features, increasing channels to support, bug fix
- Integration tests are on-going