Measurements of penguin pollution effects

Simon Akar1

on behalf of the LHCb Collaboration

1University of Cincinnati, Cincinnati, OH, United States

9th International Workshop on the CKM Unitarity Triangle
Mumbai, India, 11/28-12/03 2016
Outline

- Introduction and physics motivations
- Controlling penguin topologies
- Prospects & summary
Introduction and physics motivations
• CKM mechanism introduces CP violation and neutral meson mixing phenomena
 ‣ The presence of new heavy particles exchanged in virtual loops could introduce additional phases altering the corresponding measurements
 ‣ Constraining these phases put stringent limits on a large range of NP models

• CP violation is needed to explain baryon asymmetry in the Universe
 ‣ Discovered in 1964 in the kaons, 2004 in the B and each time awarded with Nobel Prizes
 ‣ Still missing 10 orders of magnitudes!

• Experimentally, CP violation observables accessed through ratios of measured quantities
 ‣ Cancelation of many experimental systematics
 ‣ Flagship measurements for LHCb and Belle II
CPV in interference between mixing and decay:

\[|A(B \rightarrow J/\psi X)|^2 = \phi_{q}^{\text{eff}} + \varepsilon + \delta_{q}^{\text{NP}} \]

- dominant SM “tree” contribution
- higher order “penguin” contributions from non-perturbative hadronic effects that are difficult to calculate in QCD
- NP could be comparable to penguins…

\[\phi_{q}^{\text{eff}} = \phi_{M} - 2\phi_{D} = \pm 2\beta_{q} + \Delta\phi_{q} + \delta_{q}^{\text{NP}} \]

\[\beta_{q} = \arg \left(-\frac{V_{tq} V_{tb}^{*}}{V_{cq} V_{cb}^{*}} \right) \]

- \(\phi_{s} \) and \(\phi_{d} \) determination via global fit to experimental results ignoring contributions from penguin diagrams:

\[\phi_{s}^{\text{SM}} = -2\beta_{s} = [-0.0376^{+0.0007}_{-0.0008}] \text{ rad} \]
\[\phi_{d}^{\text{SM}} = +2\beta_{d} = [48.6 \pm 2.6]^{\circ} \]

Very precise theoretical predictions!
Current experimental status

\[B^0 - \bar{B}^0 \text{ mixing phase: } \phi_d \]

\[\sin(2\beta) = \sin(2\phi_d) \]

HFAG 2016

Golden mode: \(B^0 \rightarrow J/\psi K_S^0 \)

\[\phi_{d,J/\psi K_S^0}^{\text{eff}} = [42.2 \pm 1.5]^{\circ} \]

\[\phi_{d}^{\text{SM}} = [47.8 \pm 2.6]^{\circ} \]

HFAG 2016

Golden mode: \(B_s^0 - \bar{B}_s^0 \text{ mixing phase: } \phi_s \)

\[\Delta \Gamma_s \left[\text{ps}^{-1} \right] \]

HFAG 2016

\[\phi_{s,ccs}^{\text{eff}} = [-0.030 \pm 0.033] \text{ rad} = [-1.7 \pm 1.9]^{\circ} \]

\[\phi_{s}^{\text{SM}} = [-0.0376^{+0.0007}_{-0.0008}] \text{ rad} = [-2.16^{+0.04}_{-0.05}]^{\circ} \]

- **New physics contributions, if present, will be small!!**
- **Entering a new era of precision physics: Aim to reach a precision of \(O(0.5^{\circ}) \) at the end of LHC Run-3**
- **Controlling contributions from penguin topologies becomes mandatory!**

Simon Akar

CKM 16' - Measurement of penguin pollution effects
Controlling penguin topologies
Decay topologies:

- Tree Topology
- Penguin Topology
- Exchange Topology
- Penguin-Annihilation

Decomposition:

- $B^0 \rightarrow J/\psi K^0_S$: $T + P$
- $B_s^0 \rightarrow J/\psi \phi$: $T + P + E + PA$

Assumptions:

- Given the current experimental sensitivities, exchange and annihilation topologies can be ignored (control channels to cross-check this assumption: $B_s^0 \rightarrow J/\psi \pi^0$, $B_s^0 \rightarrow J/\psi \rho^0$)
- Up to now, only penguin contributions are being studied from analyses involving SU(3) counterparts where $T \sim P$: $B_s^0 \rightarrow J/\psi K^0_S$, $B^0 \rightarrow J/\psi \rho^0$, $B_s^0 \rightarrow J/\psi \bar{K}^0$
- Ignore non-factorisable SU(3) breaking
The penguin shift $\Delta \phi_s$

$B^0_s \rightarrow J/\psi \phi$:

$$A(B^0_s \rightarrow (J/\psi \phi)_i) = \left(1 - \frac{\lambda^2}{2}\right)A'_i \left[1 + \epsilon a'_i e^{i\theta'_i} e^{i\gamma}\right]$$

$$\epsilon \equiv \frac{\lambda^2}{1 - \lambda^2} = 0.0536$$

- a'_i and θ'_i: magnitude and phase of the penguin contributions
- Amplitudes are polarisation dependent: $i \in \{0, \parallel, \perp\}$
- Penguin contributions are doubly Cabbibo-suppressed
- Will ignore Exchange and Penguin-Annihilation contributions
- Differences in hadronisation dynamics: $\Delta \phi_s$ can be polarisation dependent (but so far no indication of that in the data)
The penguin shift \(\Delta \phi_s \)

- **Partner 1: \(B_s^0 \to J/\psi \, \bar{K}^* \)**

 \[
 A \left(B_s^0 \to J/\psi \, \bar{K}^* \right) = -\lambda A_i \left[1 - a_i e^{i\theta_i} e^{i\gamma} \right]
 \]

 - Reconstructed using flavor specific final state, only access to direct CP violation, \(A_{\text{CP}}^{\text{dir}} \)
 - Need additional information from branching fractions

- **Partner 2: \(B^0 \to J/\psi \rho^0 \)**

 \[
 A \left(B^0 \to J/\psi \rho^0 \right) = -\lambda A_i \left[1 - \tilde{a}_i e^{i\tilde{\theta}_i} e^{i\gamma} \right]
 \]

 - Access to both \(A_{\text{CP}}^{\text{dir}} \) and mixing induced CP violation \(A_{\text{CP}}^{\text{mix}} \)
 - Branching fraction information is optional

Ignoring non-factorisable SU(3) breaking:

- There is **one universal** set of \(a \) and \(\theta \): \(a_i = \tilde{a}_i = a'_i \); \(\theta_i = \tilde{\theta}_i = \theta'_i \)
- The penguin shift can be expressed in terms of the penguin parameters:

\[
\tan(\Delta \phi_{s,i}) = \frac{2\epsilon a_i \cos \theta_i \sin \gamma + \epsilon^2 a_i^2 \sin(2\gamma)}{1 + 2\epsilon a_i \cos \theta_i \cos \gamma + \epsilon^2 a_i^2 \cos(2\gamma)}
\]
Analysis of $B_s^0 \to J/\psi \bar{K}^{*0}$ decays

- **Analysis overview:**
 - Perform an **angular analysis** using full Run-I data sample and measure the polarisation dependent fractions f_i, the direct CP asymmetries, and the branching fraction.

- **Results:**

 $$B(B_s^0 \to J/\psi \bar{K}^{*0}) = \left(4.13 \pm 0.16 \text{ (stat)} \pm 0.25 \text{ (syst)} \pm 0.24 \left(\frac{f_d}{f_s}\right)\right) \times 10^{-5}$$

 $f_0 = 0.497 \pm 0.025 \text{ (stat)} \pm 0.025 \text{ (syst)}$

 $f_\parallel = 0.179 \pm 0.027 \text{ (stat)} \pm 0.013 \text{ (syst)}$

 $A_{0CP}(B_s^0 \to J/\psi \bar{K}^{*0}) = -0.048 \pm 0.057 \text{ (stat)} \pm 0.020 \text{ (syst)}$

 $A_{CP}(B_s^0 \to J/\psi \bar{K}^{*0}) = 0.171 \pm 0.152 \text{ (stat)} \pm 0.028 \text{ (syst)}$

 $A_{1CP}(B_s^0 \to J/\psi \bar{K}^{*0}) = -0.049 \pm 0.096 \text{ (stat)} \pm 0.025 \text{ (syst)}$

- **Accessing penguin parameters:**

 - $A_{iCP} = \frac{\Gamma(B_s^0 \to J/\psi(K^+\pi^-)_{i}) - \Gamma(B_s^0 \to J/\psi(K^-\pi^+)_{i})}{\Gamma(B_s^0 \to J/\psi(K^+\pi^-)_{i}) + \Gamma(B_s^0 \to J/\psi(K^-\pi^+)_{i})} = -\frac{2a_i \sin \theta_i \sin \gamma}{1 - 2a_i \cos \theta_i \cos \gamma + a_i^2}$

 - $H_i \propto \frac{1}{\epsilon \left(\frac{A_i'}{A_i}\right)} \left(\frac{B(B_s^0 \to J/\psi \bar{K}^{*0}) f_i}{B(B_s^0 \to J/\psi \phi)}\right) f_i' = \frac{1 - 2a_i \cos \theta_i \cos \gamma + a_i^2}{1 + 2\epsilon a_i' \cos \theta_i \cos \gamma + \epsilon^2 a_i'^2}$

 Ratio of hadronic amplitudes calculated using latest results from QCD LCSR [arXiv:1503.05534]
Analysis of $B^0 \to J/\psi \pi^+ \pi^-$ decays

Analysis overview:
- Perform a time-dependent flavor-tagged angular analysis using full Run-I data sample and measure the direct and mixing-induced CP violation parameters
- ρ^0 disentangled from the $\pi^+ \pi^-$ spectrum using technique from [Phys. Lett. B719 (2013) 383]

Results: (using ρ^0 events)

\[
2\beta_{\text{eff}}(B^0 \to J/\psi \rho^0) = (41.7 \pm 9.6(\text{stat})^{+2.8}_{-6.3}(\text{syst}))^{\circ}
\]
\[
\alpha_{CP}(B^0 \to J/\psi \rho^0) = -(32 \pm 28(\text{stat})^{+7}_{-9}(\text{syst})) \times 10^{-3}
\]

\[
\alpha_{CP} = \frac{1 - |\lambda_f|}{1 + |\lambda_f|}
\]

Accessing penguin parameters:

\[
\Delta \phi_s = - \arg \left(\frac{\lambda_f e^{2i\gamma} - 1 + \epsilon(\lambda'_f - 1)}{(\lambda_f e^{2i\gamma} - 1) + \epsilon(\lambda'_f - 1)e^{2i\gamma}} \right) \quad \lambda'_f \equiv |\lambda_f|e^{-i\Delta 2\beta}
\]
\[
\Delta 2\beta = \left(2\beta_{J/\psi \rho} - 2\beta_{J/\psi K^0_S} \right) = (-0.9 \pm 9.7(\text{stat})^{+2.8}_{-6.3}(\text{syst}))^{\circ}
\]
Combining $B_s^0 \rightarrow J/\psi \bar{K}^{*0}$ & $B^0 \rightarrow J/\psi \rho^0$

Using the extended fit method proposed in: [JHEP 1503 (2015) 145]

- $A_{\text{dir}}^{\psi}(B_d \rightarrow J/\psi \rho^0)$
- $A_{\text{mix}}^{\psi}(B_d \rightarrow J/\psi \rho^0)$
- $\Delta \phi_s^{(\psi \rho)}$
- $A_{\text{dir}}^{\psi}(B_s \rightarrow J/\psi \phi)$
- $A_{\text{mix}}^{\psi}(B_s \rightarrow J/\psi \phi)$
- $B(B_d \rightarrow J/\psi \rho^0)$
- $B(B_s \rightarrow J/\psi \bar{K}^{*0})$
- $\mathcal{A}_{\text{dir}}^{\psi}(B_s \rightarrow J/\psi \bar{K}^{*0})$

Minimal Fit

- a_f, θ_f

Extended Fit

- New Link
- Old Input
- Test

QCD Calculations

Extract ratio of hadronic amplitudes from data
Combining $B_s^0 \to J/\psi \bar{K}^{*0}$ & $B^0 \to J/\psi \rho^0$

Using the extended fit method proposed in: [JHEP 1503 (2015) 145]

- Assuming:
 \[\frac{\mathcal{A}_i'(B_s^0 \to J/\psi \phi)}{\mathcal{A}_i(B_s^0 \to J/\psi \bar{K}^{*0})} = \frac{\mathcal{A}_i'(B_s^0 \to J/\psi \rho^0)}{\mathcal{A}_i(B^0 \to J/\psi \rho^0)} \]

Complete set of results on following slide
Combining $B_s^0 \rightarrow J/\psi \ K^{*0}$ & $B^0 \rightarrow J/\psi \ \rho^0$

Using the extended fit method proposed in: [JHEP 1503 (2015) 145]

- Assuming: \[
\frac{\mathcal{A}'_i(B_s^0 \rightarrow J/\psi \phi)}{\mathcal{A}_i(B_s^0 \rightarrow J/\psi \ K^{*0})} = \frac{\mathcal{A}'_i(B_s^0 \rightarrow J/\psi \phi)}{\mathcal{A}_i(B^0 \rightarrow J/\psi \ \rho^0)}
\]

Penguin effects in B_s^0 mixing are under control!

$\Delta \phi^{J/\psi \phi}_{s,0} = 0.000^{+0.009}_{-0.011} \ (\text{stat})^{+0.004}_{-0.009} \ (\text{syst})$

$\Delta \phi^{J/\psi \phi}_{s,\parallel} = 0.001^{+0.010}_{-0.014} \ (\text{stat})^{+0.007}_{-0.008} \ (\text{syst})$

$\Delta \phi^{J/\psi \phi}_{s,\perp} = 0.003^{+0.010}_{-0.014} \ (\text{stat})^{+0.007}_{-0.008} \ (\text{syst})$

$a_0 = 0.01^{+0.10}_{-0.01}$
$a_{\parallel} = 0.07^{+0.11}_{-0.05}$
$a_{\perp} = 0.04^{+0.12}_{-0.04}$

$\theta_0 = - (82^{+98}_{-262})^\circ$
$\theta_{\parallel} = - (85^{+71}_{-63})^\circ$
$\theta_{\perp} = (38^{+142}_{-218})^\circ$
- **Accessing Hadronic Parameters:**
 - Using the branching ratio information and solutions for \((a_i, \theta_i)\) as inputs
 - Get information on hadronic amplitudes as a nice byproduct of the fit:

<table>
<thead>
<tr>
<th></th>
<th>Fact./LCSR</th>
<th>LHCb Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{A}'_0(B_s \to J/\psi \phi))</td>
<td>1.15 ± 0.15</td>
<td>1.195_{-0.056}^{+0.074}</td>
</tr>
<tr>
<td>(\mathcal{A}_0(B_d \to J/\psi \rho^0))</td>
<td>1.25 ± 0.15</td>
<td>1.238_{-0.080}^{+0.104}</td>
</tr>
<tr>
<td>(\mathcal{A}'_1(B_s \to J/\psi \phi))</td>
<td>1.13 ± 0.10</td>
<td>1.042_{-0.063}^{+0.081}</td>
</tr>
<tr>
<td>(\mathcal{A}_1(B_d \to J/\psi \rho^0))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[JHEP 08 (2016) 098] [JHEP 11 (2015) 082]
Strategy:
- Similarly as for $\Delta \phi_s$, the decay mode $B_s^0 \to J/\psi K_S^0$ can be used to control $\Delta \phi_d$
Analysis of $B_s^0 \rightarrow J/\psi K_S^0$ decays

Analysis overview:
- First **flavor-tagged time-dependent** analysis of $B_s^0 \rightarrow J/\psi K_S^0$ decays

<table>
<thead>
<tr>
<th>Yield</th>
<th>Long K_S^0 (ps)</th>
<th>Downstream K_S^0 (ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \rightarrow J/\psi K_S^0$</td>
<td>27 801 ± 168</td>
<td>51 351 ± 231</td>
</tr>
<tr>
<td>$B_s^0 \rightarrow J/\psi K_S^0$</td>
<td>307 ± 20</td>
<td>601 ± 30</td>
</tr>
<tr>
<td>Combinatorial background</td>
<td>658 ± 37</td>
<td>2 852 ± 74</td>
</tr>
</tbody>
</table>

Results:

\[
A_{\Delta \Gamma} (B_s^0 \rightarrow J/\psi K_S^0) = 0.49 \pm 0.77^{+0.65}_{-0.65} \text{ (stat)} \pm 0.06 \text{ (syst)}
\]
\[
C_{\text{dir}} (B_s^0 \rightarrow J/\psi K_S^0) = -0.28 \pm 0.41 \text{ (stat)} \pm 0.08 \text{ (syst)}
\]
\[
S_{\text{mix}} (B_s^0 \rightarrow J/\psi K_S^0) = -0.08 \pm 0.40 \text{ (stat)} \pm 0.08 \text{ (syst)}
\]

- Successful proof of concept waiting for more statistics
- Can be used to estimate the penguin shift $\Delta \phi_d$
Prospects and summary
Prospects on penguin shift $\Delta \phi_d$

Illustration the era of the LHCb Upgrade:
- Results from [JHEP 1503 (2015) 145] using the following extrapolated inputs:

\[
\begin{align*}
A_{CP}^{\text{dir}}(B_s \rightarrow J/\psi K^0_S) &= 0.004 \pm 0.065, \\
A_{CP}^{\text{mix}}(B_s \rightarrow J/\psi K^0_S) &= -0.274 \pm 0.065,
\end{align*}
\]

$\gamma = (73.2 \pm 1.0)^\circ$

$\phi_s = -(2.1 \pm 0.5|_{\text{exp}} \pm 0.3|_{\text{theo}})^\circ$

\[
\Delta \phi_d = -(1.02 \pm 0.24(\text{stat})^{+0.17}_{-0.24}(\text{SU(3)}))^\circ
\]
Prospects on penguin shift $\Delta \phi_d$:

- Illustration the era of the LHCb Upgrade:

We will be able to control the penguin effects in B^0 mixing!
Modes to be investigated in the future:

- **Control Modes for $B_s^0 \to J/\psi \phi$:**
 1. High precision CP analysis of $B^0 \to J/\psi \rho^0$: Determination of penguin parameters
 2. Search for $B_s^0 \to J/\psi \rho^0$ and/or $B^0 \to J/\psi \phi$: Control contribution from E + PA
 3. High precision CP analysis of $B_s^0 \to J/\psi \bar{K}^*0$: Cross-check

- **Control Modes for $B^0 \to J/\psi K_S^0$:**
 1. High precision CP analysis of $B_s^0 \to J/\psi K_S^0$: Determination of penguin parameters
 2. High precision CP analysis of $B^0 \to J/\psi \pi^0$: Determination of penguin parameters
 3. Search for $B_s^0 \to J/\psi \pi^0$: Control contributions from E + PA in $B^0 \to J/\psi \pi^0$
We entered in the era of high-precision for the measurement of the \(B^0 - \bar{B}^0\) and \(B_s^0 - \bar{B}_s^0\) mixing phases.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_d [^\circ])</td>
<td>(B^0 \rightarrow J/\psi K^0_S)</td>
<td>2.2</td>
<td>1.2</td>
<td>0.4</td>
<td>(~ 0.2)</td>
<td>(~ 2.6)</td>
</tr>
<tr>
<td>(\phi_s [\text{rad}])</td>
<td>(B_s^0 \rightarrow J/\psi K^+K^-)</td>
<td>0.049</td>
<td>0.025</td>
<td>0.008</td>
<td>(~ 0.004)</td>
<td>(~ 0.001)</td>
</tr>
<tr>
<td></td>
<td>(B_s^0 \rightarrow J/\psi \pi^+\pi^-)</td>
<td>0.068</td>
<td>0.035</td>
<td>0.012</td>
<td>(~ 0.005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Combination</td>
<td>0.039</td>
<td>0.020</td>
<td>0.007</td>
<td>(~ 0.003)</td>
<td></td>
</tr>
</tbody>
</table>

- Controlling higher order corrections to \(\phi_d\) and \(\phi_s\) becomes mandatory.

- Demonstrated that we can control the penguin effects sufficiently well for the Upgrade Era:

\[\Delta \phi_s \sim 0.001 \pm 0.020 \text{ rad} \]

\[\phi_{s,c\bar{c}s}^{\text{eff}} = -0.030 \pm 0.033 \text{ rad} \]

- ...but more work might still be needed for a 300 fb\(^{-1}\) Upgrade.
"-ϕ mixing:

Octet and Singlet Contributions:
- ϕ being a pure s̅s̅ state, hence an admixture of octet and singlet state
- In the current framework, only the octet contribution is considered:
 - Only needed for the H observable to relate the form factors of $B_s^0 \rightarrow \phi$
 - and $B_s^0 \rightarrow \bar{K}^{*0}$ or $B^0 \rightarrow \rho^0$ (+ E & PA contributions are ignored)

Mixing:
- Can mix with the orthogonal ω state: parametrised by mixing angle δ

\[\mathcal{B}(B_s^0 \rightarrow J/\psi \omega) = \tan^2 \delta \times \mathcal{B}(B_s^0 \rightarrow J/\psi \phi) \]

- Challenging, but LHCb should be able to perform a measurement of this branching fraction allowing to get insight on the mixing angle δ
Penguin pollution in ϕ_s with $B_s^0 \rightarrow J/\psi K^{*0}$

Allowing for SU(3) flavor symmetry breaking:

$$a'_i = \xi \times a_i, \quad \theta'_i = \theta_i + \delta$$
Penguin pollution in ϕ_s with $B^0 \rightarrow J/\psi \rho^0$

Allowing for SU(3) flavor symmetry breaking:

\[\Delta \phi_s \text{ 95\% CL region [deg]} \]

\[\theta - \theta' \text{ [deg]} \]

LHCb

$B^0 \rightarrow J/\psi \pi^+ \pi^-$: Resonance constant

- $\pi^+ \pi^-$ invariant-mass spectrum:

![Graph showing the invariant-mass spectrum with data points, fits, and signal and background contributions.](image)

<table>
<thead>
<tr>
<th>Component</th>
<th>Fit fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho(770)$</td>
<td>65.6 ± 1.9</td>
</tr>
<tr>
<td>$f_0(500)$</td>
<td>20.1 ± 0.7</td>
</tr>
<tr>
<td>$f_2(1270)$</td>
<td>7.8 ± 0.6</td>
</tr>
<tr>
<td>$\omega(782)$</td>
<td>$0.64^{+0.19}_{-0.13}$</td>
</tr>
<tr>
<td>$\rho(1450)$</td>
<td>9.0 ± 1.8</td>
</tr>
<tr>
<td>$\rho(1700)$</td>
<td>3.1 ± 0.7</td>
</tr>
</tbody>
</table>
The LHCb experiment

- Forward General-Purpose Detector at the LHC
- ~30% of heavy quark production cross-section with just 4% of solid angle

Vertex Detector
reconstruct vertices
decay time resolution: 46 fs
IP reconstruction: 20 μm

Tracking System
momentum resolution
Δp/p = 0.4% — 0.6%

Collisions
@ 40 MHz

~12 MHz
Visible Interactions (2012)

Dipole Magnet
4 Tm
normal conducting regular polarity switches

RICH Detectors
K/π/p separation

Muon System

Calorimeters
energy measurement
particle identification
Measurement ingredients

- **Time-dependent CP asymmetry:**

\[
\mathcal{A}_{CP}(t) = \frac{\Gamma (\bar{B}_q^0(t) \to f) - \Gamma (B_q^0(t) \to f)}{\Gamma (\bar{B}_q^0(t) \to f) + \Gamma (B_q^0(t) \to f)} = \frac{S_f \sin (\Delta mt) - C_f \cos (\Delta mt)}{\cosh (\frac{\Delta \Gamma t}{2}) + A_{\Delta \Gamma} \sinh (\frac{\Delta \Gamma t}{2})}
\]

- **Mixing parameters:**

\[
\Delta m = m_H - m_L \quad \Delta \Gamma = \Gamma_L - \Gamma_H
\]

- **CP observables:**

\[
S_f = \frac{2 \Im (\lambda f)}{1 + |\lambda f|^2}, \quad C_f = \frac{1 - |\lambda f|^2}{1 + |\lambda f|^2}, \quad A_{\Delta \Gamma} = -\frac{2 \Re (\lambda f)}{1 + |\lambda f|^2}
\]

\[
\lambda_f = \frac{\eta_f q}{p} A(\bar{B}_q^0(t) \to f) = \eta_f |\lambda_f| e^{i\phi_q}
\]

\[
S_f = -\eta_f \frac{2 |\lambda_f| \sin (\phi_s)}{1 + |\lambda f|^2}, \quad A_{\Delta \Gamma} = \eta_f \frac{2 |\lambda_f| \cos (\phi_s)}{1 + |\lambda_f|^2}
\]
Measurement ingredients

- Tagging, resolution and other nuisance effects:

\[A_{\text{meas}}(t) = A_{\text{CP}}(t) \times D_{\text{res}} \times D_{\text{tag}} \pm A_{\text{det/prod}} \]

- Decay time resolution (~45 fs):

\[D_{\text{res}} = e^{-\frac{\Delta m^2 \sigma_t^2}{2}} \]

- Tagging dilution:

\[D_{\text{tag}} = (1 - 2\omega) \]
 - Initial B flavor efficiency: \(\epsilon_{\text{tag}} \)
 - Wrong tag rate: \(\omega \)
 - Effective reduction in statistical power:

\[\epsilon_{\text{eff}} = \epsilon_{\text{tag}}(1 - 2\omega)^2 \sim \mathcal{O}(\%) \]

\[\sigma_{\text{stat}}(\phi_s) \propto \frac{1}{\sqrt{\epsilon_{\text{eff}} N}} \]

- Also need to account for detection/production asymmetries, acceptance effects on time and angular variables (P \(\rightarrow \) VV), ...