Measurements of mixing and indirect CPV in two-body charm decays at LHCb

Kevin S. Maguire, on behalf of LHCb and University of Manchester

Charm at LHCb
Huge datasets of charm at LHCb, 630 million \(D^0 \rightarrow K^-\pi^+\) in 2011-2012 [LHCb-CONF-2016-005].

Must deal with acceptance effects and large backgrounds.

Probe CP in up-type quarks.

\(D^0\) mixing already established. CP violation not observed in \(D\) system.

https://cds.cern.ch/record/2200233?ln=en
Huge datasets of charm at LHCb, 630 million $D^0 \rightarrow K^- \pi^+$ in 2011-2012 [LHCb-CONF-2016-005]

[arXiv:1412.6352]
Huge datasets of charm at LHCb, 630 million $D^0 \rightarrow K^-\pi^+$ in 2011-2012 [LHCb-CONF-2016-005]

Must deal with acceptance effects and large backgrounds.

[arXiv:1412.6352]
Huge datasets of charm at LHCb, 630 million $D^0 \rightarrow K^- \pi^+$ in 2011-2012 [LHCb-CONF-2016-005]

Must deal with acceptance effects and large backgrounds.

Probe CP in up-type quarks.

[arXiv:1412.6352]
Huge datasets of charm at LHCb, 630 million $D^0 \to K^- \pi^+$ in 2011-2012 [LHCb-CONF-2016-005]

Must deal with acceptance effects and large backgrounds.

Probe CP in up-type quarks.

D^0 mixing already established.

[arXiv:1412.6352]
Huge datasets of charm at LHCb, 630 million $D^0 \to K^- \pi^+$ in 2011-2012 [LHCb-CONF-2016-005]

Must deal with acceptance effects and large backgrounds.

Probe CP in up-type quarks.

D^0 mixing already established.

CP violation not observed in D system.
1. A_Γ measurements in $D^0 \to K^+K^-, \pi^+\pi^-$.
2. Charm mixing and CPV ($R(t)^\pm$) in $D^0 \to K^\pm\pi^\mp$.
A_F measurements
Two Methods

1. Unbinned maximum likelihood of effective decay times [LHCb-CONF-2016-010].
 - 2 fb$^{-1}$ collected in 2012, and combined with a previous measurement on 1 fb$^{-1}$ from 2011 data [Phys. Rev. Lett., 112:041801, 2014].
Two Methods

1. **Unbinned maximum likelihood of effective decay times** [LHCb-CONF-2016-010].
 - 2 fb$^{-1}$ collected in 2012, and combined with a previous measurement on 1 fb$^{-1}$ from 2011 data [Phys. Rev. Lett., 112:041801, 2014].

2. **Yield asymmetries in bins of decay time** [LHCb-CONF-2016-009].
 - Full 3 fb$^{-1}$ from 2011 and 2012.
Two Methods

1. Unbinned maximum likelihood of effective decay times [LHCb-CONF-2016-010].
 - 2 fb$^{-1}$ collected in 2012, and combined with a previous measurement on 1 fb$^{-1}$ from 2011 data [Phys. Rev. Lett., 112:041801, 2014].

2. Yield asymmetries in bins of decay time [LHCb-CONF-2016-009].
 - Full 3 fb$^{-1}$ from 2011 and 2012.

- Both flavour tagged with $D^{*+} \to D^0 \pi^+$.
- Same dataset and selection, except for one condition.
- A paper including both measurements is in preparation.
Asymmetry of the effective decay widths, \(\hat{\Gamma}(D^0 \to f) \) to \(CP \)-eigenstates \(f \),

\[
A_{\Gamma} = \frac{\hat{\Gamma}(D^0 \to f) - \hat{\Gamma}(D^0 \to \bar{f})}{\hat{\Gamma}(D^0 \to f) + \hat{\Gamma}(D^0 \to \bar{f})}.
\]
Asymmetry of the effective decay widths, $\hat{\Gamma}(D^0 \to f)$ to CP-eigenstates f,

$$A_\Gamma = \frac{\hat{\Gamma}(D^0 \to f) - \hat{\Gamma}(\bar{D}^0 \to f)}{\hat{\Gamma}(D^0 \to f) + \hat{\Gamma}(\bar{D}^0 \to f)}.$$

$f = K^+K^-, \pi^+\pi^-$.
Asymmetry of the effective decay widths, $\hat{\Gamma}(D^0 \to f)$ to CP-eigenstates f,

$$A_{\Gamma} = \frac{\hat{\Gamma}(D^0 \to f) - \hat{\Gamma}(\bar{D}^0 \to f)}{\hat{\Gamma}(D^0 \to f) + \hat{\Gamma}(\bar{D}^0 \to f)}.$$

- $f = K^+K^-, \pi^+\pi^-$.
- In the Standard model (SM), this quantity is predicted to be below $\mathcal{O}(10^{-3})$ [JHEP03(2010)009] [Phys.Rev.D 75,036008], which is a level now being reached by experimental precision.
Asymmetry of the effective decay widths, $\hat{\Gamma}(D^0 \to f)$ to CP-eigenstates f,

$$A_\Gamma = \frac{\hat{\Gamma}(D^0 \to f) - \hat{\Gamma}(-D^0 \to f)}{\hat{\Gamma}(D^0 \to f) + \hat{\Gamma}(-D^0 \to f)}.$$

- $f = K^+K^-, \pi^+\pi^-.$
- In the Standard model (SM), this quantity is predicted to be below $O(10^{-3})$ [JHEP03(2010)009] [Phys.Rev.D 75,036008], which is a level now being reached by experimental precision.
- Improvements in precision are now valuable for testing SM predictions.
With negligible CPV in decay, $A_\Gamma = -(a_m + a_i)$,
With negligible CPV in decay, \(A_\Gamma = -(a_m + a_i) \), where

\[
a_m = -y \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \frac{\cos(\phi)}{2},
\]

\[
a_i = x \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \frac{\sin(\phi)}{2},
\]
With negligible CPV in decay, $A_\Gamma = -(a_m + a_i)$, where

$$a_m = -y \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \frac{\cos(\phi)}{2},$$

$$a_i = x \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \frac{\sin(\phi)}{2},$$

represent CPV in mixing and in the interference of decays.
With negligible CPV in decay, $A_\Gamma = -(a_m + a_i)$, where

\begin{align*}
a_m &= -y \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \frac{\cos(\phi)}{2}, \\
a_i &= x \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \frac{\sin(\phi)}{2},
\end{align*}

represent CPV in **mixing** and in the **interference** of decays.

x and y are the charm mixing parameters,

$\phi = \arg ((q\bar{A}_f)/(pA_f))$,

where $A_f(\bar{A}_f)$ is the amplitude of $D^0 \to f(\bar{D}^0 \to f)$ decay,

$|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle$.
Method 1: Maximum Likelihood Fit

Measure the D^0 and \bar{D}^0 effective lifetimes, $\hat{\tau} = 1/\hat{\Gamma}(D^0 \rightarrow f)$
Measure the D^0 and \bar{D}^0 effective lifetimes, $\hat{\tau} = 1/\hat{\Gamma}(D^0 \rightarrow f)$.

Correct for lifetime biases with the Swimming algorithm.
Method 1: Maximum Likelihood Fit

Measure the D^0 and \bar{D}^0 effective lifetimes, $\hat{\tau} = 1/\hat{\Gamma}(D^0 \to f)$

Correct for lifetime biases with the Swimming algorithm.

Unbinned maximum likelihood fit factorised into two stages.
Method 1: Maximum Likelihood Fit

- Measure the D^0 and \bar{D}^0 effective lifetimes, $\hat{\tau} = 1/\hat{\Gamma}(D^0 \rightarrow f)$
- Correct for lifetime biases with the Swimming algorithm.
- Unbinned maximum likelihood fit factorised into two stages.
- First stage:

\[
\Delta m = D^{*+} - D^0 \text{ mass difference}
\]

![Graph showing D^0 invariant mass](image1)

![Graph showing Δm](image2)
Event selection introduces a lifetime bias.
- Event selection introduces a lifetime bias.
- Lower selection efficiency for candidates with very low decay times.
- Event selection introduces a lifetime bias.
- Lower selection efficiency for candidates with very low decay times.
- Move the PV along the momentum direction of the D^0 and recalculate the selection.
Event selection introduces a lifetime bias.

Lower selection efficiency for candidates with very low decay times.

Move the PV along the momentum direction of the D^0 and recalculate the selection.
- Event selection introduces a lifetime bias.
- Lower selection efficiency for candidates with very low decay times.
- Move the PV along the momentum direction of the D^0 and recalculate the selection.
Event selection introduces a lifetime bias.

Lower selection efficiency for candidates with very low decay times.

Move the PV along the momentum direction of the D^0 and recalculate the selection.

\[h + h' - \tau \]

\[IP2 \]

\[PV \]

\[IP1 \]

\[D,B \]

\[h^+ \]

\[h^- \]

\[accepted? \]

\[1 = yes \]

\[0 = no \]

\[\tau \]

\[t_{\text{meas}} \]

\[t_{\text{min}} \]
Event selection introduces a lifetime bias.

Lower selection efficiency for candidates with very low decay times.

Move the PV along the momentum direction of the D^0 and recalculate the selection.
Irreducible background of D^0 from a long lived particle, like B^0.
- Irreducible background of D^0 from a long lived particle, like B^0.
- Separated using $\ln(\chi^2_{IP})$. Where χ^2_{IP} is defined as the difference between the χ^2 of the PV reconstructed with and without the considered particles.
Per-candidate probability density function (PDF) for prompt signal:

\[
f(t|\text{sig., prompt}) = \frac{1}{\tau} e^{-t'/\tau} \otimes R(t', t)
\]
Per-candidate probability density function (PDF) for prompt signal:

\[
f(t|\text{sig., prompt}) = \frac{1}{\tau} e^{-t'\tau} \otimes R(t', t)
\]

Where \(R(t', t) \) is the detector decay-time resolution.
Per-candidate probability density function (PDF) for prompt signal:

\[f(t|\text{sig.}, \text{prompt}) = \frac{1}{\tau} e^{-t'\tau} \otimes R(t', t) \]

Where \(R(t', t) \) is the detector decay-time resolution.

The per-candidates PDFs are normalised in the acceptance intervals.
Per-candidate probability density function (PDF) for prompt signal:

\[f(t|\text{sig.}, \text{prompt}) = \frac{1}{\tau} e^{-t'\tau} \otimes R(t', t) \]

Where \(R(t', t) \) is the detector decay-time resolution.

The per-candidates PDFs are normalised in the acceptance intervals.

Second Stage:
A_{Γ} for the Cabibbo favoured mode $D^0 \rightarrow K^-\pi^+$ should be zero.
- A_Γ for the Cabibbo favoured mode $D^0 \rightarrow K^{-}\pi^+$ should be zero.
- Result: pseudo-$A_\Gamma = (-0.07 \pm 0.15) \times 10^{-3}$.
- \(A_\Gamma \) for the Cabibbo favoured mode \(D^0 \rightarrow K^-\pi^+ \) should be zero.
- Result: pseudo-\(A_\Gamma = (-0.07 \pm 0.15) \times 10^{-3} \).

\[\begin{align*}
K^+K^- \ 2 \text{ fb}^{-1} \text{ Result:} \\
&(-0.03 \pm 0.46 \pm 0.10) \times 10^{-3} \\

\pi^+\pi^- \ 2 \text{ fb}^{-1} \text{ Result:} \\
&(0.03 \pm 0.79 \pm 0.16) \times 10^{-3}
\end{align*} \]
- A_{Γ} for the Cabibbo favoured mode $D^0 \rightarrow K^-\pi^+$ should be zero.
- Result: pseudo-$A_{\Gamma} = (-0.07 \pm 0.15) \times 10^{-3}$.

Main systematics from **mismodelling** of low decay-time, secondary contamination, ignored **correlations** and **combinatoric** backgrounds.
This result is combined with the previous LHCb measurement with 1 fb\(^{-1}\) \cite{PhysRevLett.112.041801}.
Method 1: 3 fb$^{-1}$ Combination

- This result is combined with the previous LHCb measurement with 1 fb$^{-1}$ [Phys. Rev. Lett., 112:041801, 2014].
- New 2 fb$^{-1}$ systematics (mismodelling, correlations) assigned to 1 fb$^{-1}$.

\[\Gamma(D_0 \rightarrow K^+K^-) = (-0.14 \pm 0.37 \pm 0.10) \times 10^{-3} \]

\[\Gamma(D_0 \rightarrow \pi^+\pi^-) = (0.14 \pm 0.63 \pm 0.15) \times 10^{-3} \]

\[\Delta \Gamma(D_0 \rightarrow K^+K^-) = (0.28 \pm 0.73 \pm 0.05) \times 10^{-3} \]

\[\Gamma(D_0 \rightarrow \pi^+\pi^-) = (-0.07 \pm 0.32 \pm 0.11) \times 10^{-3} \]
This result is combined with the previous LHCb measurement with 1 fb^{-1} \cite{PhysRevLett.112.041801, 2014}.

New 2 fb^{-1} systematics (mismodelling, correlations) assigned to 1 fb^{-1}.

Preliminary: \cite{LHCb-CONF-2016-010}

\[
A_\Gamma(D^0 \rightarrow K^+ K^-) = (-0.14 \pm 0.37 \pm 0.10) \times 10^{-3},
\]

\[
A_\Gamma(D^0 \rightarrow \pi^+ \pi^-) = (0.14 \pm 0.63 \pm 0.15) \times 10^{-3},
\]
Method 1: 3 fb$^{-1}$ Combination

- This result is combined with the previous LHCb measurement with 1 fb$^{-1}$ [Phys. Rev. Lett., 112:041801, 2014].
- New 2 fb$^{-1}$ systematics (mismodelling, correlations) assigned to 1 fb$^{-1}$.

Preliminary: [LHCb-CONF-2016-010]

\[
A_{\Gamma}(D^0 \rightarrow K^+ K^-) = (-0.14 \pm 0.37 \pm 0.10) \times 10^{-3},
\]
\[
A_{\Gamma}(D^0 \rightarrow \pi^+ \pi^-) = (0.14 \pm 0.63 \pm 0.15) \times 10^{-3},
\]
\[
\Delta A_{\Gamma} = (0.28 \pm 0.73 \pm 0.05) \times 10^{-3},
\]
\[
A_{\Gamma} = (-0.07 \pm 0.32 \pm 0.11) \times 10^{-3},
\]
Method 2: Binned yield asymmetry

- Simple counting experiment in bins of decay time.

\[A^i_{\text{raw}} = \frac{n_i(D^0 \rightarrow f) - n_i(D^0 \rightarrow f)}{n_i(D^0 \rightarrow f) + n_i(D^0 \rightarrow f)} \quad i = 1, \ldots, m \]
Method 2: Binned yield asymmetry

- Simple counting experiment in bins of decay time.

\[A_{\text{raw}}^i = \frac{n_i(D^0 \rightarrow f) - n_i(D^0 \rightarrow f)}{n_i(D^0 \rightarrow f) + n_i(D^0 \rightarrow f)} \quad i = 1, \ldots, m \]

- Straight line fit.

\[A_{\text{raw}}(t) = A_0 - \frac{t}{\tau_{D^0}} A_\Gamma \]
Sideband subtraction of the random “soft” pion from Δm fit.
Sideband subtraction of the random “soft” pion from Δm fit.

Candidates in signal and sideband region used in the analyses.
Sideband subtraction of the random “soft” pion from Δm fit.

- Candidates in signal and sideband region used in the analyses.
- Candidates in the sideband region are given negative weights.
Sideband subtraction of the random “soft” pion from Δm fit.

Candidates in signal and sideband region used in the analyses.

Candidates in the sideband region are given negative weights.

Cut on $\ln(\chi^2_{IP}) < 2$ removes secondaries.
Systematic assigned for residual contamination.
Momentum dependent charge-asymmetry in detection of “soft” pions creates a time-dependent detection asymmetry.

Due to D^0 momentum and decay-time correlation.
Momentum dependent charge-asymmetry in detection of “soft” pions creates a time-dependent detection asymmetry.

Due to D^0 momentum and decay-time correlation.

\[k = \frac{1}{\sqrt{p_x^2 + p_y^2}}, \]
\[\theta_x = \arctan\left(\frac{p_x}{p_y}\right), \]
\[\theta_y = \arctan\left(\frac{p_y}{p_z}\right), \]
- Momentum dependent charge-asymmetry in detection of “soft” pions creates a time-dependent detection asymmetry.
- Due to D^0 momentum and decay-time correlation.

\[k = \frac{1}{\sqrt{p_x^2 + p_y^2}}, \]
\[\theta_x = \arctan\left(\frac{p_x}{p_y}\right), \]
\[\theta_y = \arctan\left(\frac{p_y}{p_z}\right) \]

- Equalise the asymmetries with (k, θ_x, θ_y).
- \[R = \frac{(k, \theta_x, \theta_y)_\pi^+}{(k, \theta_x, \theta_y)_\pi^-} \]
- Reweight R to 1.
Pseudo-A_{T}

Preliminary: Before Correction: [LHCb-CONF-2016-009]
Preliminary: Before Correction: [LHCb-CONF-2016-009]

Kevin S. Maguire
CKM2016
December 1st, 2016
18 / 28
Pseudo-A_Γ

Preliminary: Before Correction: [LHCb-CONF-2016-009]

![Graph showing $A_{K\pi}^{raw}(t)$ for 2011 and 2012 data, with error bars and chi-squared values for each bin.]

- 2011 Up: $+1.65 \pm 0.30$, $\chi^2/ndf = 36.17/27$
- 2011 Down: -0.11 ± 0.25, $\chi^2/ndf = 12.81/27$
- 2012 Up: $+0.77 \pm 0.18$, $\chi^2/ndf = 57.10/27$
- 2012 Down: -0.06 ± 0.17, $\chi^2/ndf = 28.87/27$
- Average: $+0.41 \pm 0.19$, $\chi^2/ndf = 33.05/3$
Pseudo-A_{Γ}

Preliminary: Before Correction: [LHCb-CONF-2016-009]
Pseudo-A_{π}

Preliminary: Before Correction: [LHCb-CONF-2016-009]

1. $A_{\pi}^K(t)$
 - LHCb preliminary
 - 2011 Up
 - 2011 Down
 - 2012 Up
 - 2012 Down

2. $A_{\pi}^{\text{raw}}(t)$

Preliminary: After Correction:

1. $A_{\pi}^K(t)$
 - LHCb preliminary
 - 2011 Up
 - 2011 Down
 - 2012 Up
 - 2012 Down

2. $A_{\pi}^{\text{corr}}(t)$

Results:
- $A_{\pi}^{\text{raw}}(t)$
 - $A_{\pi}^{\text{corr}}(t)$

- $A_{\pi}^K(t)$
 - 11Up
 - 11Dw
 - 12Up
 - 12Dw
 - avg.

- $A_{\pi}^{\text{corr}}(t)$
 - 11Up
 - 11Dw
 - 12Up
 - 12Dw
 - avg.

- χ^2/ndf
 - 11Up: $+1.65 \pm 0.30$ ($\chi^2/\text{ndf} = 36.17/27$)
 - 11Dw: -0.11 ± 0.25 ($\chi^2/\text{ndf} = 12.81/27$)
 - 12Up: $+0.77 \pm 0.18$ ($\chi^2/\text{ndf} = 57.10/27$)
 - 12Dw: -0.06 ± 0.17 ($\chi^2/\text{ndf} = 28.87/27$)
 - avg.: $+0.41 \pm 0.10$ ($\chi^2/\text{ndf} = 22.07/3$)

- χ^2/ndf
 - 11Up: $+0.56 \pm 0.30$ ($\chi^2/\text{ndf} = 19.53/27$)
 - 11Dw: $+0.04 \pm 0.25$ ($\chi^2/\text{ndf} = 12.31/27$)
 - 12Up: -0.01 ± 0.18 ($\chi^2/\text{ndf} = 29.47/27$)
 - 12Dw: $+0.23 \pm 0.18$ ($\chi^2/\text{ndf} = 29.64/27$)
 - avg.: $+0.16 \pm 0.10$ ($\chi^2/\text{ndf} = 3.01/3$)
Preliminary: Before Correction: [LHCb-CONF-2016-009]

Preliminary: After Correction:
Method 2: Results

\[D^0 \rightarrow K^+K^- \]

Preliminary:

\[D^0 \rightarrow \pi^+\pi^- \]
Method 2: Results

\[D^0 \rightarrow K^+ K^- \]

\[D^0 \rightarrow \pi^+ \pi^- \]

Preliminary:

\[
\begin{align*}
A_\Gamma(D^0 \rightarrow K^+ K^-) &= (-0.30 \pm 0.32 \pm 0.10) \times 10^{-3}, \\
A_\Gamma(D^0 \rightarrow \pi^+ \pi^-) &= (0.46 \pm 0.58 \pm 0.12) \times 10^{-3},
\end{align*}
\]
Method 2: Results

\[D^0 \rightarrow K^+ K^- \]

\[D^0 \rightarrow \pi^+ \pi^- \]

Preliminary:

\[A_\Gamma(D^0 \rightarrow K^+ K^-) = (-0.30 \pm 0.32 \pm 0.10) \times 10^{-3}, \]
\[A_\Gamma(D^0 \rightarrow \pi^+ \pi^-) = (0.46 \pm 0.58 \pm 0.12) \times 10^{-3}, \]

World’s best measurement!
Method 2: Results

\[D^0 \rightarrow K^+ K^- \]

\[D^0 \rightarrow \pi^+ \pi^- \]

Preliminary:

\[
A_\Gamma(D^0 \rightarrow K^+ K^-) = (-0.30 \pm 0.32 \pm 0.10) \times 10^{-3},
\]

\[
A_\Gamma(D^0 \rightarrow \pi^+ \pi^-) = (0.46 \pm 0.58 \pm 0.12) \times 10^{-3},
\]

World’s best measurement!

\[
\Delta A_\Gamma = (-0.76 \pm 0.66 \pm 0.04) \times 10^{-3},
\]

\[
A_\Gamma = (-0.13 \pm 0.28 \pm 0.10) \times 10^{-3},
\]
Unbinned maximum likelihood [LHCb-CONF-2016-010]

\[A_\Gamma(D^0 \rightarrow K^+K^-) = (-0.14 \pm 0.37 \pm 0.10) \times 10^{-3}, \]
\[A_\Gamma(D^0 \rightarrow \pi^+\pi^-) = (0.14 \pm 0.63 \pm 0.15) \times 10^{-3}, \]

Yield asymmetry in bins (more accurate) [LHCb-CONF-2016-009]

\[A_\Gamma(D^0 \rightarrow K^+K^-) = (-0.30 \pm 0.32 \pm 0.10) \times 10^{-3}, \]
\[A_\Gamma(D^0 \rightarrow \pi^+\pi^-) = (0.46 \pm 0.58 \pm 0.12) \times 10^{-3}, \]
Unbinned maximum likelihood [LHCb-CONF-2016-010]

\[
A_{\Gamma}(D^0 \rightarrow K^+ K^-) = (-0.14 \pm 0.37 \pm 0.10) \times 10^{-3},
\]
\[
A_{\Gamma}(D^0 \rightarrow \pi^+ \pi^-) = (0.14 \pm 0.63 \pm 0.15) \times 10^{-3},
\]

Yield asymmetry in bins (more accurate) [LHCb-CONF-2016-009]

\[
A_{\Gamma}(D^0 \rightarrow K^+ K^-) = (-0.30 \pm 0.32 \pm 0.10) \times 10^{-3},
\]
\[
A_{\Gamma}(D^0 \rightarrow \pi^+ \pi^-) = (0.46 \pm 0.58 \pm 0.12) \times 10^{-3},
\]

- The more accurate yield asymmetry in bins is taken as the final result.

- Toy tests using both methods on datasets with randomised flavour tags show that the results are compatible.
$R^\pm(t)$ of $D^0 \rightarrow K^\pm \pi \pm$
\[D^0 \rightarrow K^- \pi^+(\text{Right Sign})(CF), \]
$D^0 \rightarrow K^- \pi^+ (\text{Right Sign})(\text{CF}),$

$D^0 \rightarrow K^+ \pi^- (\text{Wrong Sign})(\text{DCS}),$
- Time dependent ratio of amplitudes for small x and y (sign indicates flavour tag):

\[
\frac{WS^\pm(t)}{RS^\pm(t)} := R^\pm(t) \approx R_D^\pm + \sqrt{R_D^\pm y'^\pm} \Gamma t + \frac{x'^\pm + y'^\pm}{4} (\Gamma t)^2
\]
Time dependent ratio of amplitudes for small x and y (sign indicates flavour tag):

$$\frac{WS^\pm(t)}{RS^\pm(t)} := R^\pm(t) \approx R^\pm_D + \sqrt{R^\pm_D}y'^\pm \Gamma t + \frac{x'^\pm 2 + y'^\pm 2}{4} (\Gamma t)^2$$

Three models

- **CP symmetry**: $R^+ = R^-, (x'^+)^2 = (x'^-)^2, y'^+ = y'^-.$
- **CP symmetry in decay amplitudes**: $R^+ = R^-.$
- All **CP violation** allowed.
- Single tag prompt with “soft” pion only

- Double tag (DT) secondary B decays with muon and “soft” pion
 [arXiv:1611.06143].

Kevin S. Maguire
CKM2016
December 1st, 2016 24 / 28
- Single tag prompt with “soft” pion only

- Double tag (DT) secondary B decays with muon and “soft” pion
 [arXiv:1611.06143].

- DT cleaner and provides measurements at low decay times.

- Single tag has larger statistics and covers longer decay times.

- DT adds 3% of the statistics but removes 10%-20% from the errors.
- Make unphysical sample of
 \(\bar{B} \rightarrow \mu^+ D^{*+} X \) (same sign).
- Remove muon mistags by reweighting with the same sign distributions.
- Make unphysical sample of $\bar{B} \to \mu^+ D^{*+} X$ (same sign).
- Remove muon mistags by reweighting with the same sign distributions.
- Extract the signal yields from Δm in bins of time.
- Make unphysical sample of \(\bar{B} \rightarrow \mu^+ D^{*+} X \) (same sign).
- Remove muon mistags by reweighting with the same sign distributions.
- Extract the signal yields from \(\Delta m \) in bins of time.
- One \(\Delta m \) fit of the time-integrated RS data is used to constrain the signal parameters for all bins.
- Do this for RS and WS and both flavours.
Use the three mixing hypotheses to fit the measured $R(t)^\pm$.

- **(top)** The ratio of D^0 to WS over \bar{D}^0 to RS.

- **(middle)** The ratio of \bar{D}^0 to WS over D^0 to RS.

- **(bottom)** The difference of the two.
Use the three mixing hypotheses to fit the measured $R(t)^\pm$.

- **(top)** The ratio of D^0 to WS over D^0 to RS.
- **(middle)** The ratio of \bar{D}^0 to WS over D^0 to RS.
- **(bottom)** The difference of the two.

Consistent with the No CPV, mixing only hypothesis.
Conclusion
- Results of two complimentary A_f measurements.
- World’s best measurement.
Conclusion

- Results of two complimentary A_T measurements.
- World’s best measurement.
- Results from new DT and previously published prompt WS/RS ratio.
- Fits consistent with CP symmetry and CP violation hypothesis.
Conclusion

- Results of two complimentary A_T measurements.
- World’s best measurement.
- Results from new DT and previously published prompt WS/RS ratio.
- Fits consistent with CP symmetry and CP violation hypothesis.

All results consistent with No CPV in D.
Backup
Swimming returns a tuple of turning points (TPs) which define decay-time acceptance intervals.

- Only the first acceptance interval is considered.
- The acceptance for each fit component is determined using an iterative process of unfolding.
- Validate by comparing the sum of the component TP distributions to data.

First TP, TP_1

First TP - Second TP, TP_{diff}
The per-candidate probability density functions (PDFs) are normalised in the accepted interval.

\[
f(t|TP_1, TP_{\text{diff}}, \text{class}) = \frac{f(t|\text{class})\Theta(t-TP_1)\Theta(TP_1+TP_{\text{diff}}-t)}{\int_{TP_1}^{TP_1+TP_{\text{diff}}} f(t|\text{class}) \, dt}
\]

where \(\Theta(t)\) is the heavy-side function.

\(f(t|\text{class})\) is the “unbiased” PDF, for prompt signal:

\[
f(t|\text{sig.}, \text{prompt}) = \frac{1}{\tau} e^{-t'\tau} \otimes R(t', t)
\]

Where \(R(t', t)\) is the detector decay-time resolution.
\(\pi^+ \pi^- \) unbinned likelihood fits
$\pi^+\pi^- \text{ binned } A_\Gamma \text{ fits}$

$A^{\pi\pi}_{\text{raw}}(t)$

$A^{\pi\pi}_{\text{corr}}(t)$

χ^2/ndf:

- 2011 Up: $+4.94 \pm 1.62$, $\chi^2/\text{ndf}: 23.92/27$
- 2011 Down: -0.71 ± 1.35, $\chi^2/\text{ndf}: 14.04/27$
- 2012 Up: $+3.54 \pm 0.98$, $\chi^2/\text{ndf}: 17.20/27$
- 2012 Down: $+0.23 \pm 0.95$, $\chi^2/\text{ndf}: 37.63/27$
- Avg.: $+1.77 \pm 0.57$, $\chi^2/\text{ndf}: 13.09/3$

- 2011 Up: $+0.46 \pm 0.58$, $\chi^2/\text{ndf}: 20.99/27$
- 2011 Down: -1.76 ± 1.37, $\chi^2/\text{ndf}: 16.34/27$
- 2012 Up: $+1.42 \pm 0.99$, $\chi^2/\text{ndf}: 19.54/27$
- 2012 Down: -0.50 ± 0.96, $\chi^2/\text{ndf}: 35.43/27$
- Avg.: $+0.46 \pm 0.58$, $\chi^2/\text{ndf}: 8.67/3$
Define mixing parameters:

\[|D_{1,2}⟩ = p|D^0⟩ ± q|\bar{D}^0⟩ \]

\[x := \frac{δm}{Γ} := \frac{2(m_1 - m_2)}{Γ_1 + Γ_2}, \quad y := \frac{Γ_2 - Γ_1}{Γ_2 + Γ_1}, \quad \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos δ & \sin δ \\ -\sin δ & \cos δ \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \]
Counting experiment for N observed WS and RS decays for two flavours (\pm).

\[
R(t)_{\text{obs}}^\pm = R(t)^\pm (1 - \Delta_p^\pm) \left(\frac{\epsilon(K^+\pi^-)}{\epsilon(K^-\pi^+)} \right)^{\pm1} + p_{\text{other}}^\pm
\]
Counting experiment for N observed WS and RS decays for two flavours (\pm).

$$R(t)^{\pm}_{\text{obs}} = R(t)^{\pm}(1 - \Delta^{\pm}_p) \left(\frac{\epsilon(K^+\pi^-)}{\epsilon(K^-\pi^+)} \right)^{\pm 1} + p^{\pm}_{\text{other}}$$

Time-dependent ratio.
Counting experiment for N observed WS and RS decays for two flavours (\pm).

$$R(t)^{\pm}_{\text{obs}} = R(t)^{\pm}(1 - \Delta_p^{\pm}) \left(\frac{\epsilon(K^+\pi^-)}{\epsilon(K^-\pi^+)} \right)^{\pm1} + p^{\pm}_{\text{other}}$$

- Time-dependent ratio.
- \propto fraction of prompt in DT sample.
Counting experiment for N observed WS and RS decays for two flavours (\pm).

$$R(t)^\pm_{\text{obs}} = R(t)^\pm (1 - \Delta_p^\pm) \left(\frac{\epsilon(K^+\pi^-)}{\epsilon(K^-\pi^+)}\right)^{\pm1} + p_{\text{other}}^\pm$$

- Time-dependent ratio.
- \propto fraction of prompt in DT sample.
- Detection efficiency asymmetry.
Counting experiment for N observed WS and RS decays for two flavours (\pm).

$$R(t)_{\text{obs}}^{\pm} = R(t)^{\pm}(1 - \Delta_{p}^{\pm}) \left(\frac{\epsilon(K^+\pi^-)}{\epsilon(K^-\pi^+)} \right)^{\pm1} + p_{\text{other}}^{\pm}$$

Time-dependent ratio.

\propto fraction of prompt in DT sample.

Detection efficiency asymmetry.

MisID and peaking backgrounds.
$R(t)^{\pm}$ Fit Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DT + Prompt</th>
<th>Prompt-only</th>
</tr>
</thead>
<tbody>
<tr>
<td>No CPV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_D[10^{-3}]$</td>
<td>3.533 ± 0.054</td>
<td>3.568 ± 0.067</td>
</tr>
<tr>
<td>$x'[10^{-4}]$</td>
<td>0.36 ± 0.43</td>
<td>0.55 ± 0.49</td>
</tr>
<tr>
<td>$y'[10^{-3}]$</td>
<td>5.23 ± 0.84</td>
<td>4.8 ± 0.9</td>
</tr>
<tr>
<td>χ^2/ndf</td>
<td>$96.6/111$</td>
<td>$86.4/101$</td>
</tr>
<tr>
<td>No direct CPV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_D[10^{-3}]$</td>
<td>3.533 ± 0.054</td>
<td>3.568 ± 0.067</td>
</tr>
<tr>
<td>$(x'^+)^2 [10^{-4}]$</td>
<td>0.49 ± 0.50</td>
<td>0.64 ± 0.56</td>
</tr>
<tr>
<td>$y'^+ [10^{-3}]$</td>
<td>5.14 ± 0.91</td>
<td>4.8 ± 1.1</td>
</tr>
<tr>
<td>$(x'^-)^2 [10^{-4}]$</td>
<td>0.24 ± 0.50</td>
<td>0.46 ± 0.55</td>
</tr>
<tr>
<td>$y'^- [10^{-3}]$</td>
<td>5.32 ± 0.91</td>
<td>4.8 ± 1.1</td>
</tr>
<tr>
<td>χ^2/ndf</td>
<td>$96.1/109$</td>
<td>$86.0/99$</td>
</tr>
<tr>
<td>All CPV allowed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_D^+ [10^{-3}]$</td>
<td>3.474 ± 0.081</td>
<td>3.545 ± 0.095</td>
</tr>
<tr>
<td>$(x'^+)^2 [10^{-4}]$</td>
<td>0.11 ± 0.65</td>
<td>0.49 ± 0.70</td>
</tr>
<tr>
<td>$y'^+ [10^{-3}]$</td>
<td>5.97 ± 1.25</td>
<td>5.1 ± 1.4</td>
</tr>
<tr>
<td>$R_D^- [10^{-3}]$</td>
<td>3.591 ± 0.081</td>
<td>3.591 ± 0.090</td>
</tr>
<tr>
<td>$(x'^-)^2 [10^{-4}]$</td>
<td>0.61 ± 0.61</td>
<td>0.60 ± 0.68</td>
</tr>
<tr>
<td>$y'^- [10^{-3}]$</td>
<td>4.50 ± 1.21</td>
<td>4.5 ± 1.4</td>
</tr>
<tr>
<td>χ^2/ndf</td>
<td>$95.0/108$</td>
<td>$85.9/98$</td>
</tr>
</tbody>
</table>
$R(t) \pm$ DT only fits.
DT only fit results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_D[10^{-3}]$</td>
<td>$3.48 \pm 0.10 \pm 0.01$</td>
</tr>
<tr>
<td>$x'[{10}^{-4}]$</td>
<td>$0.28 \pm 3.10 \pm 0.11$</td>
</tr>
<tr>
<td>$y'[10^{-3}]$</td>
<td>$4.60 \pm 3.70 \pm 0.18$</td>
</tr>
<tr>
<td>χ^2/ndf</td>
<td>$6.3/7$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_D[10^{-3}]$</td>
<td>$3.48 \pm 0.10 \pm 0.01$</td>
</tr>
<tr>
<td>$(x')^2[10^{-4}]$</td>
<td>$1.94 \pm 3.67 \pm 1.17$</td>
</tr>
<tr>
<td>$y'^+ [10^{-3}]$</td>
<td>$2.79 \pm 4.27 \pm 0.98$</td>
</tr>
<tr>
<td>$(x'-)^2 [10^{-4}]$</td>
<td>$-1.53 \pm 4.04 \pm 1.68$</td>
</tr>
<tr>
<td>$y'^- [10^{-3}]$</td>
<td>$6.51 \pm 4.38 \pm 1.66$</td>
</tr>
<tr>
<td>χ^2/ndf</td>
<td>$5.6/5$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_D^+[10^{-3}]$</td>
<td>$3.38 \pm 0.15 \pm 0.06$</td>
</tr>
<tr>
<td>$(x'^+)^2 [10^{-4}]$</td>
<td>$-0.19 \pm 4.46 \pm 0.32$</td>
</tr>
<tr>
<td>$y'^+ [10^{-3}]$</td>
<td>$5.81 \pm 5.25 \pm 0.31$</td>
</tr>
<tr>
<td>$R_D^- [10^{-3}]$</td>
<td>$3.60 \pm 0.15 \pm 0.07$</td>
</tr>
<tr>
<td>$(x'^-)^2 [10^{-4}]$</td>
<td>$0.79 \pm 4.31 \pm 0.38$</td>
</tr>
<tr>
<td>$y'^- [10^{-3}]$</td>
<td>$3.32 \pm 5.21 \pm 0.40$</td>
</tr>
<tr>
<td>χ^2/ndf</td>
<td>$4.5/4$</td>
</tr>
</tbody>
</table>