Lattice sites of Na dopants in ZnO

U Wahl¹, J G Correia¹, L Amorim², S Decoster², M R da Silva³, and L M C Pereira²

¹ Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
² KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium
³ Centro de Física Nuclear da Universidade de Lisboa, Avenida Professor Gama Pinto 2, 1649-003 Lisboa, Portugal

E-mail: uwahl@ctn.tecnico.ulisboa.pt

Received 29 February 2016, revised 30 May 2016
Accepted for publication 16 June 2016
Published 28 July 2016

Abstract

The angular distribution of $\beta^-$ particles emitted by the radioactive isotope $^{24}$Na was monitored following implantation into ZnO single crystals at fluences above $5 \times 10^{12}$ cm$^{-2}$ at CERN’s ISOLDE facility. We identified sodium on two distinct sites: on substitutional Zn sites and on interstitial sites that are close to the so-called octahedral site. The interstitial Na was to large extent converted to substitutional Na already for annealing at 200°C, from which an activation energy of 0.8–1.3 eV, most likely around 1.2 eV, is estimated for the migration of interstitial Na in ZnO.

Keywords: emission channeling, ZnO, p-type ZnO, sodium, lattice location, diffusion

(Some figures may appear in colour only in the online journal)

1. Introduction

Successful $p$-type doping of ZnO remains one of the challenges that need to be solved before this II-VI wide band gap semiconductor is suitable for wider use in devices [1–3]. Besides doping with group V elements such as N, P, As or Sb, one of the approaches that has been investigated is the use of the group IA alkali metals Li, Na and K or group IB transition metals Cu and Ag, cf the reviews in Refs. [1–4]. These elements should form acceptors if substituting for the group II element Zn. The use of Li and Na to dope ZnO was already investigated in the 1950s, overviews of the early literature on this subject can be found in Refs. [4–7]. With respect to Li, Lander [8] suggested in 1960 that it acts not only as an acceptor (Li$_{Zn}$ in its ionized form) but also as interstitial donor Li$_i^+$, and that its amphoteric nature should complicate its use as efficient $p$-type dopant. Due to the chemical similarity of Li and Na it was assumed that the same holds for Na, although much less experimental studies have investigated this heavier alkali metal. In 1974 an electron paramagnetic resonance (EPR) signal was assigned to substitutional Na$_{Zn}$ on Zn sites [9]. In 2004 EPR and electron nuclear double resonance signals measured in Li and Na doped ZnO nanoparticles were suggested to result from interstitial Li and Na [10–11], although no specific lattice site was proposed. Recently positron annihilation spectroscopy in Na-diffused samples showed a reduction in the concentration of Zn vacancies $V_{Zn}$, indicating that Na diffusing interstitially had become substitutional by filling up $V_{Zn}$ [12]. The work of Meyer et al [5–7], who studied Li, Na and H-diffused ZnO by means of photoluminescence (PL), suggested that both Li and Na cannot act as shallow acceptors unless found in complexes with H. However, successful $p$-type doping of ZnO by means of Na has been repeatedly reported over the years [13–22].

In contrast to the relatively scarce experimental evidence on the structural aspects of group IA elements in ZnO, a considerable number of theoretical studies have addressed this topic [4,23–32]. While it seems to be a consensus that Li, Na and K are most stable on substitutional Zn sites, several authors proposed that, in particular under O-vacancy rich conditions or when the Fermi level is close to the valence band, they can also occupy interstitial sites. In particular, among the various possible positions in the wurtzite structure (Figure 1), the so-called octahedral sites have been predicted to be the most stable sites for the group IA interstitials [24–28]. From a theoretical point of view it nowadays seems to be accepted that the $p$-type doping efficiency of column-IA elements in ZnO is limited by the formation of compensating interstitial donors.

As mentioned above, so far only indirect experimental evidence has been given on the possible lattice sites of Na in ZnO. In this work, we report on the lattice location of radioactive $^{24}$Na implanted into ZnO single crystals determined by means of the $\beta^-$ emission channeling effect. We give direct
evidence that following low-fluence room temperature (RT) implantation the majority of Na occupies interstitial sites slightly displaced from the ideal octahedral position (I) parallel to the c-axis, while following annealing at temperatures at 200°C or above the majority of Na is found on substitutional Zn sites (Na₁z₂). First experimental estimates for the activation energy of diffusion of interstitial Na and the dissociation of substitutional Na₁z₂ are given as well.

2. Experimental

The radioactive isotope ²⁴Na (τ₁/₂ = 14.96 h) was ion implanted into single-crystalline ZnO samples at the ISOLDE on-line isotope separator facility at CERN. At ISOLDE, radioactive Na isotopes are produced by means of 1.4-GeV proton-induced spallation reactions from UCₙ Na isotopes are produced by means of 1.4-GeV proton-induce...
ing of 8 unit cells. The disturbances and how to treat continuous displacements parallel or basal to the c-axis were also considered. The lattice sites of highest symmetry are illustrated in Figure 1. The \textit{"octahedral interstitial"} (I\textsubscript{8}) positions are sites which are centered exactly between the planes of Zn and O atoms in the wide open space between c-axis atomic rows. While in other wurtzite semiconductors, e.g. GaN or AlN, these are usually abbreviated as \textquotedblleft O\textquotedblright sites, note that we have here used the term \textquotedblleft I\textsubscript{8}\textquotedblright in order to avoid confusion with the substitutional O sites in ZnO. We have used the designation hexagonal HA or HB sites for interstitial sites that are shifted by +0.32 Å or −0.32 Å from the I\textsubscript{8} sites along the [0001]-axis, both of which are aligned with anti-bonding directions but have Zn or O nearest neighbors, respectively. As HAB sites we designated positions that are a distance of 1.3 Å from I\textsubscript{8} sites, and are also characterized by equal distances towards neighbouring Zn and O atoms.

Figure 2 shows the calculated \(\beta^-\) emission channeling patterns for \(^{24}\)Na resulting from 100\% of emitter atoms on substitutional Zn sites S\textsubscript{Zn} and for 100\% on sites close to the octahedral interstitial position I\textsubscript{8} (shifted by 0.23 Å towards HA). Since S\textsubscript{Zn} sites are always aligned with rows and planes of Zn atoms this causes channeling of \(\beta^-\) particles that are emitted under small angles to these directions, and hence an increase in the measured \(\beta^-\) count rate is expected along all axial and planar directions. For interstitial I\textsubscript{8} sites, on the other hand, maxima in \(\beta^-\) count rate are expected along those directions with which the I\textsubscript{8} sites are aligned, and minima along those where they are centered in the interstitial region, cf. Figures 1 and 3. For instance, I\textsubscript{8} sites are perfectly centered within the (11−20) atomic planes, approximately aligned with rows of Zn or O atoms along [−1102] and [−1101] but completely interstitial with respect to the [0001] and [−2113] axes and the (01−10) planes. Correspondingly one expects channeling effects along (11−20), [−1102] and [−1101] but minima along the [0001] axis and the (01−10) planes. The emission patterns for ideal I\textsubscript{8}, HA or HB sites differ only slightly from the ones shown.

The angular-dependent \(\beta^-\) emission patterns measured in the RT as-implanted state of sample #1 are shown in Figure 4 (a)−(d) and following annealing at 600°C in Figure 5 (a)−(d). Direct comparison to the theoretical patterns for

#### Figure 2.
Simulated \(\beta^-\) emission channeling patterns for \(^{24}\)Na in ZnO along the four major crystallographic directions. (a)−(d) are patterns for 100\% of emitter atoms on substitutional Zn sites S\textsubscript{Zn}, while (e)−(h) are for 100\% on interstitial sites shifted by 0.2 Å from I\textsubscript{8} towards HA.

#### Figure 3.
Schematic projections along the major crystallographic directions of a hexagonal ZnO crystal consisting of 8 unit cells. The positions of the interstitial I\textsubscript{8}, HA and HB sites are shown as small red, orange, and yellow circles. While the boundaries of the unit cells are shown in green, bonds between Zn and O atoms are indicated in yellow.

#### Figure 3.
Schematic projections along the major crystallographic directions of a hexagonal ZnO crystal consisting of 8 unit cells. The positions of the interstitial I\textsubscript{8}, HA and HB sites are shown as small red, orange, and yellow circles. While the boundaries of the unit cells are shown in green, bonds between Zn and O atoms are indicated in yellow.

#### Figure 3.
Schematic projections along the major crystallographic directions of a hexagonal ZnO crystal consisting of 8 unit cells. The positions of the interstitial I\textsubscript{8}, HA and HB sites are shown as small red, orange, and yellow circles. While the boundaries of the unit cells are shown in green, bonds between Zn and O atoms are indicated in yellow.

3. Results

Figure 2 shows the calculated \(\beta^-\) emission channeling patterns for \(^{24}\)Na resulting from 100\% of emitter atoms on substitutional Zn sites S\textsubscript{Zn} and for 100\% on sites close to the octahedral interstitial position I\textsubscript{8} (shifted by 0.23 Å towards HA). Since S\textsubscript{Zn} sites are always aligned with rows and planes of Zn atoms this causes channeling of \(\beta^-\) particles that are emitted under small angles to these directions, and hence an increase in the measured \(\beta^-\) count rate is expected along all axial and planar directions. For interstitial I\textsubscript{8} sites, on the other hand, maxima in \(\beta^-\) count rate are expected along those directions with which the I\textsubscript{8} sites are aligned, and minima along those where they are centered in the interstitial region, cf. Figures 1 and 3. For instance, I\textsubscript{8} sites are perfectly centered within the (11−20) atomic planes, approximately aligned with rows of Zn or O atoms along [−1102] and [−1101] but completely interstitial with respect to the [0001] and [−2113] axes and the (01−10) planes. Correspondingly one expects channeling effects along (11−20), [−1102] and [−1101] but minima along the [0001] axis and the (01−10) planes. The emission patterns for ideal I\textsubscript{8}, HA or HB sites differ only slightly from the ones shown.

The angular-dependent \(\beta^-\) emission patterns measured in the RT as-implanted state of sample #1 are shown in Figure 4 (a)−(d) and following annealing at 600°C in Figure 5 (a)−(d). Direct comparison to the theoretical patterns for...
In contrast, all major features in the experimental patterns following 600°C annealing [Figure 5 (a)–(d)] are compatible with emitter atoms on substitutional $S_{Zn}$ sites as shown in Figure 2 (a)–(h). As a matter of fact, the detailed fits resulted in fractions of $89\%$ of $^{24}Na$ on $S_{Zn}$ sites and only $12\%$ on Na$_i$ sites towards the HA position. This can be attributed to a small overestimation of the back-ground. By performing fits that allowed for three different fractions of emitter atoms on regular lattice sites it was also checked whether other lattice sites could be involved. However, there was no significant improvement in chi square obtained in this case.

In contrast, all major features in the experimental patterns following 600°C annealing [Figure 5 (a)–(d)] are compatible with emitter atoms on substitutional $S_{Zn}$ sites as shown in Figure 2 (a)–(h). As a matter of fact, the detailed fits resulted in fractions of $89\%$ of $^{24}Na$ on $S_{Zn}$ sites and only $12\%$ on Na$_i$ sites towards the HA position. This can be attributed to a small overestimation of the back-ground. By performing fits that allowed for three different fractions of emitter atoms on regular lattice sites it was also checked whether other lattice sites could be involved. However, there was no significant improvement in chi square obtained in this case.

Figure 4. (a)–(d): Normalized $β^+$ emission yield from sample #1 in the vicinity of [0001], [−1102], [−1101], and [−2113] directions in the room temperature as-implanted state. (e)–(h): Best fit results, corresponding to $73\%$ of $^{24}Na$ on interstitial Na$_i$ as described in the text and $30\%$ on $S_{Zn}$ sites.

I$_s$ sites shown in Figure 2 (e)–(h) indicates that interstitial sites close to I$_s$ account for most of the features observed in the RT as-implanted experimental results. This is most obvious in case of the [0001] and [−2113] patterns. However, there are certain features for which a pure occupancy of I$_s$ sites cannot account, e.g. the small central peak remaining along [0001]. A more detailed quantitative analysis is achieved by means of fitting the experimental yields by a superposition of theoretical patterns for substitutional $Zn$ and interstitial sites plus a constant distribution. In order to test which interstitial position provided the best fit, the location of the interstitial site was varied parallel to the c-axis in steps of 0.03–0.05 Å, covering the full range from one HAB to the next HAB position, and including the HA, I$_s$, and HB sites. As is visible from Figure 6, the chi square of fit for all three directions was minimized for a position that is shifted by 0.20–0.29 Å from ideal I$_s$ sites towards the HA position. This site is indicated in Figure 1 as Na$_i$ site. The best fit results for the emission channeling patterns in the RT as-implanted state are shown in Figure 4 (e)–(h) and were obtained for $73\%$ on Na$_i$ sites, $30\%$ on $S_{Zn}$ and a constant angular distribution of $−3\%$. The constant angular distribution accounts for emitter atoms in so-called random sites, which are sites of low crystal symmetry or in heavily damaged surrounding, but also for contributions from the scattering background, as was explained in sect. II. The result that the sum of emitters on HA and $S_{Zn}$ sites is slightly larger than $100\%$ and that correspondingly the constant distribution contributes with a negative value can be attributed to a small overestimation of the background.

In Figure 7 we have displayed the fitted fractions of $^{24}Na$ on different lattice sites for all three samples as a function of annealing temperature $T_A$. For sample 1, following the measurements in the RT as-implanted state and following
The results of which were described above, an additional annealing step at 900°C resulted in partial outdiffusion of the \(^{24}\)Na from the sample. The \(\beta^+\) emission patterns from the ~50% remaining activity were completely isotropic, consequently we have used a fitted fraction of 0% on any regular lattice sites in Figure 7 (a). For sample #2 annealing steps were performed at 200°C, 400°C, 600°C and 750°C [Figure 7(a)], which showed that already following \(T_A = 200^\circ\text{C}\) a large part of interstitial Na had been converted to substitutional Na on Zn sites. The final anneal of this sample at 750°C resulted in no detectable out-diffusion of Na with 100% remaining on \(S_{2z}\) sites. Finally, sample #3, which was implanted, in addition to \(5 \times 10^{14} \text{ cm}^{-2}\) stable \(^{24}\)Mg, also with a 4–6 times higher fluence of radioactive \(^{24}\)Na than the other two samples, allowed to perform a larger number of annealing steps [Figure 7 (b)]. Remarkably, in this sample already in the RT as-implanted state 63% of \(^{24}\)Na on \(S_{2z}\) sites was the dominating fraction. The 34% of Na near interstitial \(I_8\) sites was successively converted to substitutional Na as annealing progressed to 200°C, but increased again somewhat up till \(T_A = 650^\circ\text{C}\). For annealing temperatures at 600°C and above, the \(S_{2z}\) substitutional fraction of Na progressively decreased, with the final 700°C anneal resulting in a 70% drop in count rate from the sample, but leaving ~12% of the remaining \(^{24}\)Na on substitutional Zn sites.

### 4. Discussion

Our results show unambiguously the existence of interstitial Na in ZnO and its preferred lattice position, which is close to the octahedral interstitial \(I_8\) site, but slightly shifted from the ideal \(I_8\) position towards the HA site. Similar shifts were recently observed for \(^{24}\)Na in GaN and AlN [41]. In the naïve picture of ZnO as an ionic compound formed by Zn\(^{2+}\) ions of ionic radius \(r(\text{Zn}^{2+}) = 0.60 \ \text{Å}\) and \(r(\text{O}^{2-}) = 1.38 \ \text{Å}\) such a shift would have its explanation in the Na\(^+\) ion being pushed away by the larger O\(^{2-}\) ions.

It is interesting to compare our emission channeling lattice location results to \(\beta\) nuclear magnetic resonance (\(\beta\)-NMR) experiments undertaken to measure the nuclear quadrupole moment of the radioactive Na isotopes \(^{24}\)Na and \(^{25}\)Na [42–46]. In these studies spin-polarized Na nuclei were implanted at RT into ZnO single crystals held at a magnetic field of ~0.5 T. The \(\beta\) asymmetry resulting from nuclear decay was then measured as a function of an applied radiofrequency field, resulting in nuclear quadrupole resonance of the nuclei. In all cases it was found that the Na nuclei are exposed to two different electric field gradients (EFGs) in ZnO, roughly at a ratio of 70:30, which was ascribed to two different lattice locations of implanted Na. We note that the ratio of 70:30 between the two fractions of the two different EFGs corresponds almost exactly to the ratio of the fractions of \(^{24}\)Na on interstitial and on substitutional Zn sites (72:33) obtained in our low-fluence emission channeling experiments directly following RT implantation. Since \(\beta\)-NMR experiments are typically performed at implanted fluences which are even lower than in emission channeling experiments, we conclude that the main quadrupole resonance observed in \(\beta\)-NMR of Na in ZnO at RT is due to interstitial Na\(_i\), whereas only the side resonance results from substitutional Na\(_{2z}\).

Upon annealing to the relatively low temperature of 200°C, interstitial Na\(_i\) is converted to large extent to Na\(_{2z}\) on substitutional Zn sites. Our microscopic interpretation of these lattice site changes is that interstitial Na\(_i\) starts to migrate between RT and 200°C and then combines with Zn vacancies \(V_{2z}\) that are present in the sample as consequence of the implantation process. This type of site changes from interstitial positions to substitutional cation sites was found for the ion implanted alkali metal Li in a variety of compound semiconductors using alpha emission channeling from the radioactive probe \(^{6}\)Li [47]. The site changes are very effectively promoted by the
fact that the interstitial alkali metals are positively charged ions Li⁺ and Na⁺, while the cation vacancies in compound semiconductors usually carry a negative charge Z. This means that when the positive interstitial is within the Coulomb capture radius \( R_C \) of the vacancy

\[
R_C = \frac{Ze^2}{\kappa k_B T}
\]

(1), where \( e \) is the electron charge, \( k_B \) the Boltzmann constant, \( T \) the temperature and \( \kappa \) the dielectric constant of the semiconductor, thermally activated migration will lead to a drift process of the interstitial towards the vacancy. The activation energy \( E_M \) for migration of interstitial Li⁺ or Na⁺ can then be estimated using a drift model [47] by

\[
E_M = k_B T \frac{3}{2} \ln \left[ \frac{3Ze^2 D_0 \Delta \tau_{\text{ann}}}{\kappa k_B T^{1/2} \langle r_i^3 \rangle} \right]
\]

(2), where \( T_{1/2} \) is the temperature at which half of the interstitial probes have been converted to substitutional (=145°C = 418 K for \(^{24}\text{Na} \) in ZnO sample #2), \( \Delta \tau_{\text{ann}} \approx 10 \) min is the annealing time, and \( D_0 \) is the entropy constant of the interstitial migration. For ZnO the negative charge of the cation \( N \) means that \( \text{Na}^+ \) in ZnO sample #1, to which the high-fluence co-implantation of \(^{24}\text{Na} \) was applied, results from its own implantation process, so that the application of this correlated capture drift model makes sense. The entropy constant \( D_0 \) of the interstitial migration of Na in ZnO can be estimated as follows:

\[
D_0 = \frac{r_{0}^{2} V_{0}}{6 N_{\text{NN}}}
\]

(3), where \( V_0 \) is the attempt frequency, \( r_M \) the jump distance, and \( N_{\text{NN}} \) the number of accessible nearest neighbour jump sites. In principle, \( r_M \) and \( N_{\text{NN}} \) may depend in ZnO on whether diffusion occurs only along the \( c \)-axis (\( N_{\text{NN}} = 2, r_M = 2.60 \) Å), only perpendicular to it (\( N_{\text{NN}} = 6, r_M = 3.25 \) Å), or both (\( N_{\text{NN}} = 8, r_M = 3.09 \) Å), however, since \( D_0 \) appears as argument in the logarithm, this distinction is here of minor importance. Using a typical \( V_0 = 10^{12} \) s⁻¹ of the order of the lattice vibrations, the estimated value for the migration energy of interstitial Na in ZnO using the correlated capture drift model is thus \( E_M = 1.25-1.32 \) eV.

A somewhat different approach to estimating \( E_M \) is by means of \( N \)-step jump models, where one assumes that the interstitial Na has to make a certain number of jumps \( N \) until it is being captured by \( V_{Zn} \). In such models the fraction \( f_i(T) \) of Na which remains on interstitial sites following annealing at temperature \( T \) is given by

\[
f_i(T) = f_{i0} \exp\left[ - \frac{V_0 \Delta \tau_{\text{ann}}}{N} \exp\left( \frac{-E_M}{k_B T} \right) \right]
\]

(4), where \( f_{i0} \) is the interstitial fraction before the anneal and all other variables are as defined above. Solving for \( E_M \), one arrives at

\[
E_M = k_B T \ln \left[ \frac{V_0 \Delta \tau_{\text{ann}}}{N \ln(f_{i0} / f_i)} \right]
\]

(5).

The models then require reasonable assumptions about the number of steps. First, one can assume as lower limit of jumps that \( N = 1 \), i.e. the implanted Na is located directly neighbouring to \( V_{Zn} \). This results in \( E_M(N=1) = 1.24 \) eV for sample #2, a value that is close to the one derived from the drift approximation. This is understandable since in the drift approximation we used the assumption that the root mean cube distance of Na to the next \( V_{Zn} \) is \(< r_i^3 >= 6.6 \) Å, as obtained from MARLOWE simulations, requiring only a very small number of jumps. However, since dynamic annealing of vacancies occurs already during the implantation and afterwards, the number of vacancies will be significantly reduced, so that also an upper limit for \( N \) should be considered. For that purpose a reasonable assumption is that the diffusion-induced broadening of the implantation profile (\( r_{M}^{3} N/3 \)) is less than the mean implantation depth of \(^{24}\text{Na} \) (663 Å), which would require \( N \) to be smaller than \( 138000 \), resulting in \( E_M > 0.81 \) eV.

We will now focus on what can be learned from the results of sample #3, to which the high-fluence co-implantation of \(^{24}\text{Mg} \) was applied. Obviously, in this sample the initial interstitial fraction of \(^{24}\text{Na} \) is much smaller than in the low-fluence implanted samples, making substitutional \(^{24}\text{Na} \) already the dominating lattice site following RT implantation. First let us consider the order of magnitude that the temperature of the sample as a whole may have been raised during the implantation. While the energy deposited by the fluence of \( 5.3 \times 10^{15} \) cm⁻² of 50 keV \(^{24}\text{Na} \) into a beam spot of 1 mm diameter corresponds to \( 1.4 \times 10^{17} \) eV, this amounts to only 0.20 meV per atom in the 5x5x0.5 mm³ sample as a whole, which is quite negligible compared to the RT thermal energy of \( ~25 \) meV. If it were limited to the 1 mm diameter area of the sample hit by the beam, the energy introduced corresponds to 6.3 meV/atom which without further dissipation would lead to a temperature increase of \( ~20 \) K (specific heat of ZnO is 41.1 J/mol/K). Since the implantation lasted 15 min much of this energy will be distributed over a larger area of the sample. At the microscopic level the energy introduced by each implanted ion results in a damage cascade that cools down after a thermal spike. During high-fluence implantations these thermal spikes may overlap in space and time which may raise the effective temperature in the implanted region, however, to quantitatively assess this effect is beyond the scope of this work. From the \(^{24}\text{Mg}+^{24}\text{Na} \) fluence of \( 5.3 \times 10^{14} \) cm⁻² and the number of \( ~260 \) Zn vacancies created per implanted ion one estimates a peak Zn vacancy concentration of \( 1 \times 10^{12} \) cm⁻³. This means that in the peak of the implantation profile every 5–6⁰ Zn atom has been displaced. The fact that the ZnO sample essentially still retains its single crystal structure is a consequence of the very efficient dynamic annealing processes that take place in this material and that are responsible for its well-known exceptional radiation hardness [50–51].

We should also briefly discuss the likely influence of changes in the electrical characteristics of the ZnO samples caused by the implantation. Not intentionally doped ZnO single crystals are generally n-type, i.e. the Fermi level should be close to the conduction band. When damage was introduced...
by MeV oxygen or medium energy (0.1–1 MeV) transition metals, it was observed that undoped ZnO in the as-implanted state gradually became isolating, i.e. $n$-type carriers were removed [51–52] and the Fermi level should move towards mid gap. On the contrary, the implantation of Si [53], Al [54], C [55] or Ge [56] strongly decreased ZnO resistivity by means of inducing additional $n$-type carriers, also already in the as-implanted state. However, in these latter cases it was not clear to what extent the $n$-type carriers were induced by possible electrical donor activity of radiation damage or the implanted impurity. In $^{57}$Mn Mössbauer experiments it was observed that the implantation of $1.4 \times 10^{13} \text{cm}^{-2}$ of $^{23}$Na at 60 keV was able to change the predominant ionization state of Fe in ZnO from Fe$^{2+}$ to Fe$^{3+}$, which was explained by radiation damage induced changes of the Fermi level towards mid gap [57]. This would mean that in our case already the low-fluence $^{24}$Na implantations in samples #1 and #2 ($5 \times 10^{12} \text{cm}^{-2}$ and $7 \times 10^{12} \text{cm}^{-2}$) may have been accompanied by a shift of the Fermi level, an effect that would be even more pronounced in the high-fluence Mg-implanted sample #3. A further shift of the Fermi level towards mid gap, however, should favour the inclusion of Na on interstitial sites [23–26] in comparison to sample #1 and #2, which was not observed. Therefore, the increased substitutional fraction of Na in sample #3 directly following implantation is most likely to be explained by a combination of excess thermal energy and Zn vacancies. Moreover, the Zn vacancy concentration was probably so high that the application of a 1-step model best describes the lattice site changes of Na upon annealing. Using this approach, one obtains a value of $E_M = 1.17 \text{eV}$ for the migration energy of interstitial Na. Summarizing, the migration energy $E_M$ of interstitial Na$_i$ in ZnO as estimated from site changes of $^{23}$Na observed by emission channeling and using the drift approximation or reasonable $N$-step models is in the range 0.81–1.32 eV, however, we consider a value around 1.2 eV quite likely. Huang et al [27] have theoretically predicted the migration energy Na$_i$ to be 0.74 eV perpendicular to the $c$-axis and 1.33 eV parallel to it. Our estimates hence coincide well with this energy range.

We also tried to give an estimate for the activation energy of dissociation $E_A$ of Na from substitutional Zn sites. If this process leads to subsequent long-range diffusion or to Na being trapped in highly-defective regions of the sample, it shows up in the emission channeling site fractions as changes from substitutional to random sites, and, after replacing $E_M$ by $E_A$ and $f_s$ by the substitutional fraction $f_s$, eq. (5) can be used to derive $E_A$. However, in this case our results currently do not allow to reach a clear conclusion. In the $^{24}$Mg high-fluence co-implanted sample #3 already annealing at 600°C and above lead to progressive decrease of the substitutional $^{24}$Na fraction. Neuvonen et al [58–59] observed that the shape of the profile of 150 keV high fluence ($10^{15} \text{cm}^{-2}$) implanted Na in ZnO changed after 30 min annealing at 550–600°C, while for the lower Na fluence of $10^{14} \text{cm}^{-2}$ an annealing temperature of 800°C was needed in order to cause a similar effect. In our studies, the substitutional fraction in the low-fluence implanted sample #2 stayed constant up to the highest annealing temperature used in this case (750°C), and only in sample #1 partial out-diffusion of Na for $T_A = 900°C$ clearly proved long-range migration. It thus looks as if the stability of Na on substitutional sites is lower in samples that have suffered more severe radiation damage, which is poorly understood and would require further studies. We tentatively estimate the activation energy for dissociation of substitutional Na $E_A$ to be in the range 2.0–3.3 eV. Huang et al in their work [27] only have calculated values for the activation energy for dissociation of substitutional Li$_{iZn}$, in the two different charge states $−1$ and 0. $E_A$(Li$_{iZn}^{-1}$) = 3.41 eV, $E_A$(Li$_{iZn}^{0}$) = 3.24 eV, stating that “Na$_{Zn}$, K$_{Zn}$ and Ag$_{Zn}$ are much more stable than Li$_{Zn}$”.

Lattice location experiments with $^{24}$Na have been previously performed also in hexagonal GaN and AlN [41,60], that in many aspects have quite similar properties to ZnO. It is hence not surprising that also in these two III-nitride semiconductors co-existence of $^{24}$Na on interstitial sites near the octahedral position and on substitutional cation Ga or Al sites was found, although the maximum interstitial fractions in the RT as-implanted state were with 40–60% lower than in ZnO. The most striking difference, however, was the stability of interstitial Na against thermal annealing. With the conversion of interstitial to substitutional Na in GaN and AlN only clearly visible around 900°C, the migration energies estimated were $E_M$(Na$_i$) = 2.2–3.4 eV in GaN and $E_M$(Na$_i$) = 2.0–2.6 eV in AlN [41], meaning that interstitial Na diffuses considerably faster in ZnO than in those two nitrides.

5. Conclusions

In addition to confirming that Na dopants prefer Zn sites in ZnO, our results have given first direct evidence of the existence of interstitial Na$_i$. We have shown that Na$_i$ prefers the vicinity of the octahedral interstitial sites $I_8$ rather than the tetrahedral interstitial $T$ sites, in agreement with the predictions in several theoretical papers [24–28]. However, Na$_i$ is slightly shifted by 0.23 Å from the ideal $I_8$ site parallel to the $c$-axis towards the HA position, i.e. located somewhat closer to the nearest Zn atoms and further away from O atoms. The amount of interstitial Na is reduced when additional radiation damage is created in the sample, which we ascribe to the increase in the number of available Zn vacancies. The interstitial Na is to large extent converted to substitutional Na already for annealing at 200°C, from which an activation energy of 0.8–1.3 eV, most likely around 1.2 eV, is estimated for the migration of interstitial Na$_i$ in ZnO. Greater uncertainty exists regarding the activation energy for dissociation of substitutional Na $E_A$, which we tentatively estimate to be in the range 2.0–3.3 eV.

Acknowledgments

This work is dedicated to the memory of our colleague Peter Weilhammer from CERN, who led the development of the position-sensitive Si pad detectors used in this and numerous other emission channeling studies and who passed away on May 27, 2016. We acknowledge the beam time provided by...
References


[19] Liu H, Pan X, Ding P, Ye Z, He H and Huang J 2012 Effects of diffusion temperature and diffusion time on fabrication of Na-diffused p-type ZnO thin films Materials Letters 80 175


[26] Lee E C and Chang K J 2006 p-type doping with group-I elements and hydrogenation effect in ZnO Physica B 376 707


[41] Ogura M et al 2004 Quadrupole Moments of Na Isotopes *Hyperf. Inter.* **159** 235


