Semi-tauonic physics at LHCb

Elena Graverini

on behalf of the LHCb collaboration

December 17, 2016

Miami topical conference on elementary particles, astrophysics, and cosmology
Indirect probes for New Physics

• Two ways of searching for NP:
 ◦ directly produce new particles in high energy collisions
 ◦ look for indirect effects from virtual particles in precisely predicted SM processes

• Ground state B decays mediated by bosons $20 \times$ heavier than m_B → sensitive to effects from heavier particles

\[
\overline{B} \left\{ b \rightarrow \nu_\tau \right\} \text{ } D^{(*)}
\]
Lepton universality

- **SM implies lepton universality**: lepton flavours are identical to one another, i.e. electroweak couplings are the same
- Amplitudes for processes involving e, μ, τ should be the same once the effects depending on the different mass are factorised out
 - differences due to the different mass can be large! e.g:
 \[
 \mathcal{B}(Z \rightarrow \tau\tau) = \mathcal{B}(Z \rightarrow ee, \mu\mu) \\
 \mathcal{B}(\psi(2s) \rightarrow \tau\tau) = 0.39 \times \mathcal{B}(\psi(2s) \rightarrow ee, \mu\mu)
 \]
- Lepton non-universality would be a clear sign of NP
- **No definitive observation yet**
Semileptonic B hadron decays

- “β decay” of B hadrons: emission of leptons and neutrinos, with recoiling hadronic system
- strong part and weak part are factorizable \Rightarrow easier theoretical computation

\[
\frac{d\Gamma}{dq^2} (B \to D^* \ell \nu) \propto \frac{G_F^2 |V_{cb}|^2 f^2(q^2)}{m_{D^*}^2}
\]

- taking the ratio cancels most uncertainties in the QCD transition between B and D^*

\[
R(D^*) \equiv \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* \mu \nu)}
\]
Semitauonic decays

- semileptonic decays to e and μ extensively studied at B factories
- decays to the third generation less well measured ($\sim 5\times$ larger uncertainties)

- still room for NP in tree-level decays
 - especially if NP couples preferentially to 3rd generation
 - like the Higgs does...
 - teaser: additional charged Higgs bosons, leptoquarks...
Measuring semi-tauonic decays

- long lifetime $c\tau_b \sim 400\mu m \implies$
 - important for b tagging + SV reconstruction
- Take $B \to D^*\ell\nu$, with $\ell = \mu, \tau$
- with the leptonic τ decay:
 \(\tau \to \mu\nu\bar{\nu} \) ($B \approx 17\%$)
- μ and τ modes result in identical visible final states
 \(\implies \) nice normalization
- taking the ratio cancels effects due to reconstruction
What measuring $R(D^*)$ looks like

Challenges

- no sharp peaks to fit to separate μ from τ (but some handles)
- 1–3 neutrinos in the final state
- background from partially reconstructed B decays
Distinguishing τ from μ

Looking at the decay kinematics in the B rest frame:

<table>
<thead>
<tr>
<th>$B^0 \rightarrow D^{*+} \tau^- \nu$</th>
<th>$B^0 \rightarrow D^{*+} \mu^- \nu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{miss}^2 > 0$</td>
<td>$m_{miss}^2 = 0$</td>
</tr>
<tr>
<td>E_μ^* spectrum is soft</td>
<td>E_μ^* spectrum is hard</td>
</tr>
<tr>
<td>$m_\tau^2 \leq q^2 \leq 10.6 \text{ GeV}^2$</td>
<td>$0 \leq q^2 \leq 10.6 \text{ GeV}^2$</td>
</tr>
</tbody>
</table>
\(R(D^*) \) at B-factories

- B factories operate at the \(\Upsilon(4s) \rightarrow B\bar{B} \) energy
- no other hadrons produced
- more kinematic information at B factories
- possibility to fully reconstruct one side of the event

\[\Upsilon(4S) \rightarrow B\bar{B} \]

\(B \) tagging, from Lück @ ICHEP2014
$R(D^*)$ at LHC(b)

- unknown CM frame for $gg \rightarrow b\bar{b}$
- lots of additional particles
- missing neutrinos \Rightarrow underconstrained kinematics
- background from partially reconstructed B decays
The LHCb detector...

...is a single-arm forward spectrometer at the LHC, covering 15-300 mrad
The LHCb detector

- >96% efficient tracking system, excellent p resolution
The LHCb detector

- >96% efficient tracking system, excellent p resolution
- VELO provides 20μm IP resolution, essential to separate the b hadron vertex
The LHCb detector

- >96% efficient tracking system, excellent p resolution
- VELO provides 20\(\mu\)m IP resolution, essential to separate the b hadron vertex

- RICH 1, 2 + muon chambers for PID
Event selection

• online selection based on D^0 candidate
• combine $D^0 \rightarrow K\pi$ from the trigger with a slow π (to form a D^*, which decays immediately) and a μ
• D^0 vertex well separated from the primary vertex (pp)
• μ, K and π not pointing to the primary vertex
• reconstructed D^0 not pointing to the primary vertex (suppressing prompt charm background)
B reconstruction

- ambiguities in the reconstruction of the B rest frame
- B boost along z is much larger than the boost of its daughters in the B rest frame
- well-behaved approximation, small momentum dependence on the resolution of the flight direction
Boost approximation

\[B \rightarrow D^{* \tau \nu} \]
\[B \rightarrow D^{* \mu \nu} \]

MC truth

Reconstructed

Fit strategy

- Obtain template histograms for all processes contributing to the $B^0 \to D^* \mu \nu$ yield
 - τ mode and μ mode, and partially reconstructed backgrounds use Monte Carlo simulation tuned on real data
 - $B \to D^{**} (\to D^* \pi, D^* \pi\pi) \ell \nu$ with missing pions
 - $B \to D^* H_c (\to \mu \nu X') X$
 - other backgrounds use control samples obtained from real data
 - combinatorial background
 - $h \to \mu$ misidentification

- Use these templates as PDF for a maximum likelihood fit to data
LHCb performed the fit in 4 bins of q^2.

SM: $R(D^*) = 0.252 \pm 0.003$ (Phys.Rev.D85(2012) 094025)

<table>
<thead>
<tr>
<th></th>
<th>LHCb</th>
<th>Belle</th>
<th>BaBar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$0.293 \pm 0.038 \pm 0.015$</td>
<td>$0.302 \pm 0.030 \pm 0.011$</td>
<td>$0.332 \pm 0.024 \pm 0.018$</td>
</tr>
<tr>
<td>$0.336 \pm 0.027 \pm 0.030$</td>
<td>$0.276 \pm 0.034^{+0.029}_{-0.026}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Main LHCb systematic: statistical uncertainty on simulated samples and modelling of mis-ID background. Both can be improved.
Results

- all experiments see excess of signal with respect to the SM
- B factories also measured $R(D)$
- latest HFAG average reports a 3.9 σ deviation from the SM

http://www.slac.stanford.edu/xorg/hfag
Implications

Other measured anomalies

- $R(K) = 0.745^{+0.090}_{-0.074} \pm 0.036$ \cite{PRL113,151601} (2014)

 $(B \to K_{ee}/B \to K\mu\mu, 2.6 \sigma$ from unity)

- P_5' in $B \to K^*\mu\mu$, also at Belle

 \cite{JHEP02,1604.04042}

- if new particles couple more to 2nd and 3rd first generation, expect $R_K < 1$ and $R(D^*) > R(D^*)_{SM}$

- example model that fixes all anomalies: ~ 1 TeV leptoquarks

\begin{align*}
 b & \quad \nu \\
 \phi & \quad c \quad (s) \\
 \tau \quad (\nu) & \quad s \\
 \phi & \quad \mu \\
 \mu & \quad t \\
 b & \quad \phi \quad \mu \\
 \nu & \quad \tau \\
 \tau & \quad \phi \\
 \phi & \quad \mu
\end{align*}

\cite{M. Bauer, M. Neubert, Phys. Rev. Lett. 116, 141802 (2016)}
More semitauonic physics at LHCb

- \(R(D^*) \) with \(B \to D^*\tau (\to 3\pi)\nu \)
 - complimentary information, different systematics
 - unfortunately non-\(\tau \) \(D^*3\pi X \) is 100\(\times \) larger
 - separation of the 3\(\pi \) vertex

- \(R(D^0), R(D^+) \)
 - require careful evaluation of feed-down from \(D^* \)

- \(R(D_s) \) with \(B_s \to D_s\tau\nu \)
 - many excited states emitting neutral particles

- \(R(J/\psi) \) with \(B_c \to J/\psi\tau\nu \)
 - clean \(B(J/\psi \to \mu\mu) \) can compensate for low \(B_c \) production

- \(R(\Lambda_c), R(\Lambda^*_c) \) from \(\Lambda_b \) decays
 - different spin structure ensures different physics sensitivity, discriminating tensor contributions
Conclusions

- New physics must be out there and B physics is a promising sector
- How to get rid of detector effects and of QCD uncertainty?
 - look at factorizable semileptonic decays
 - measure ratio of observables (LFU, angular analyses)

- $B \to D^* \tau \nu$ was the first measurement of a $b \to c \tau \nu$ decay at a hadron collider
- Difficult measurement, yet result is tantalizing given the history of measurements of this channel all above the SM
- Run 2 data set will reduce the uncertainty by 60%
- $R(D^*)$ marks the beginning of a vast exploration in several channels
- Not only R, but also angular analyses, form factors, and charmless semi-tauonic decays
Spare slides
Flavour physics

- Flavour physics is the study of different generations of fermions
- It can help in excluding/finding NP regardless of its mass scale
 - and determine its flavour structure

\[
V_{CKM} = \begin{pmatrix}
1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\
-\lambda & 1 - \lambda^2/2 & A\lambda^2 \\
A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1
\end{pmatrix} + \mathcal{O}(\lambda^4)
\]

- \(V_{CKM} \) hierarchical and nearly diagonal
- transitions between different generations suppressed
- 3rd generation especially isolated
 \[\implies\] tree-level \(b \) decays suppressed, long \(b \) lifetime
What measuring $R(D^*)$ looks like

Challenges

- 1–3 neutrinos in the final state
- no sharp peaks to fit
- difficult to separate μ from τ
- at B factories one can use tagging, but not at the LHC
Heavy flavour physics at LHC

- large amount of beauty hadrons produced (at 7 TeV: $\sigma_{b\bar{b}} \approx 280 \mu\text{b}$)
- b hadrons produced with highly boosted CM frame
- central detector: 98% solid angle coverage provides 52% B hadron acceptance
- forward detector: 3% solid angle coverage provides 27% B hadron acceptance
The LHCb detector

- Tracking system (VELO+ST+OT) >96% efficient for charged particles crossing the whole detector
- VELO provides 20 μm IP resolution, 45 fs decay time resolution for b hadron decays

- RICH 1, 2 + muon chambers for PID
Triggering

- avoid biasing: trigger as inclusive as possible
- L0 trigger: muons and calorimetry
- HLT: full reconstruction for tracks with $p_T > 300$ MeV

$R(D^*)$ trigger

- both μ and τ modes use charm trigger, allowing $D^0 \rightarrow K \pi$ with well separated vertex
- no triggering on the muon!
Current tests of Lepton Flavour Universality, I

$$R(K_{\ell2}) \equiv \frac{\mathcal{B}(K \to e\nu)}{\mathcal{B}(K \to \mu\nu)} = (2.488 \pm 0.010) \times 10^{-5}$$

$$R(K_{\ell2})_{SM} = (2.477 \pm 0.001) \times 10^{-5}$$

- In agreement with SM
Current tests of Lepton Flavour Universality, II

Branching fractions of $b \to s\ell\ell$ transitions are very sensitive to various NP contributions!
Current tests of Lepton Flavour Universality, III

- BaBar, Belle, LHCb:

\[
R(K) = \frac{\mathcal{B}(B \to K\mu\mu)}{\mathcal{B}(B \to K\text{ee})}
\]

\[
R(K)_{SM} = 1 \pm \mathcal{O}(10^{-3})
\]

- LHCb: PRL 113 (2014) 151601
- BaBar: PRD 86 (2012) 032012
- Belle: PRL 103 (2009) 171801
Current tests of Lepton Flavour Universality, IV

- \(B^0 \rightarrow K^* \mu \mu \)
 - BF lower than prediction (but consistent)
 - 3.4 \(\sigma \) tension in one of the variables describing the angular distributions

- CMS: PLB 753 (2016) 424
- Belle: arXiv:1604.04042
Current tests of Lepton Flavour Universality, V

- $B^0 \rightarrow K^* ee$
 - challenging due to low statistics, resolution, and triggering issues
 - in agreement with predictions
 - LHCb: JHEP 04 (2015) 064
 - SM: PRD 93 (2016) 014028

- $B_s \rightarrow \phi \mu \mu$
 - BF lower than prediction (local 3σ tension in $1 < q^2 < 6$ GeV2)
 - angular observables consistent with SM
 - LHCb: JHEP 09 (2015) 179
Current tests of Lepton Flavour Universality, VI

- $B_s \rightarrow \mu \mu$ and $B^0 \rightarrow \mu \mu$
 - combined CMS and LHCb measurement + ATLAS independent measurement
 - lower BF but compatible with SM
• arXiv:1506.01705
• $SU(2)_L$ triplet of massive vector bosons
coupled predominantly to 3rd generation fermions
explains:
 ◦ $R(D^*)$
 ◦ $R(K)$
 ◦ tension between inclusive and exclusive meas. of $|V_{cb}|$ and $|V_{ub}|$

Exclusion limits:
\[
\begin{align*}
&\mathcal{B}(Z' \to \tau\tau) = 0.01 \\
&\mathcal{B}(Z' \to \tau\tau) = 0.10
\end{align*}
\]

\[
\begin{array}{cccc}
200 & 400 & 600 & 800 & 1000 & 1200 & 1400 \\
0.05 & 0.10 & 0.50 & 1 \\
\end{array}
\]

ν_0 (GeV)

Elena Graverini (Universität Zürich)