Measurement of the cross section for electroweak production of $Z\gamma$ in association with two jets and constraints on anomalous quartic gauge couplings in proton-proton collisions at $\sqrt{s} = 8$ TeV

The CMS Collaboration

Abstract

A measurement is presented of the cross section for the electroweak production of a Z boson and a photon in association with two jets in proton-proton collisions at $\sqrt{s} = 8$ TeV. The Z bosons are identified through their decays to electron or muon pairs. The measurement is based on data collected with the CMS detector corresponding to an integrated luminosity of 19.7 fb$^{-1}$. The electroweak contribution has a significance of 3.0 standard deviations, and the measured fiducial cross section is $1.86^{+0.90}_{-0.75}$ (stat)$^{+0.34}_{-0.26}$ (syst) ± 0.05 (lumi) fb, while the summed electroweak and quantum chromodynamic total cross section in the same region is observed to be $5.94^{+1.33}_{-1.35}$ (stat)$^{+0.43}_{-0.37}$ (syst) ± 0.13 (lumi) fb. Both measurements are consistent with the leading-order standard model predictions. Limits on anomalous quartic gauge couplings are set based on the $Z\gamma$ mass distribution.

1 Introduction

With the discovery of the Higgs boson at the CERN LHC [1, 2], the standard model (SM) became a great success. The high energy and luminosity of the LHC provides the opportunity to observe many processes that are predicted by the SM, including electroweak production of multiple gauge bosons ($W\gamma$ [3], $V\gamma\gamma$ [4, 5]), vector boson scattering (VBS) (same charge W^+W^- scattering [7–9], $\gamma\gamma \rightarrow W^+W^-$ [10], EW $W\gamma jj$ [11], $W^\pm Z$ [12]), and vector boson fusion (VBF) (EW $W(Z)jj$ [13–16]). Same charge $W^\pm W^\pm$ scattering has been observed by ATLAS, and the exclusive $\gamma\gamma \rightarrow W^+W^-$ process by CMS, both with significances larger than 3 standard deviations. The triboson final state $Z\gamma\gamma$ has been observed by ATLAS and CMS with a significance larger than 5 standard deviations. The EW production of a Z boson (decaying into two oppositely-charged leptons), a photon, and two jets (henceforth denoted $Z\gamma jj$) has never been studied before, and is the subject of this paper. While the cross section for quantum chromodynamic (QCD) induced $Z\gamma jj$ production is orders of magnitude larger than the one for EW production, the latter can be used to perform important tests of the SM, and to search for contributions from physics beyond the SM that could manifest themselves as anomalous trilinear or quartic gauge boson couplings (aTGC or aQGC [3–7, 9, 10, 12, 13]).

This letter presents a measurement of the associated EW production of $Z\gamma jj$, using the 8 TeV proton-proton collision data recorded by the CMS detector. The major processes contributing to EW $Z\gamma jj$ production are represented by the Feynman diagrams in Fig. 1. They are (a) bremsstrahlung, (b) multiperipheral (or non-resonant) production, (c) VBF with either two trilinear gauge boson couplings (TGC), or (d) VBS with quartic gauge boson couplings (QGC). The VBS processes are particularly interesting because they involve QGCs (e.g. $WWZ\gamma$). It is not possible, however, to isolate the QGC processes from the other contributions, such as the double TGC processes that are topologically similar. The interference of the VBS diagrams ensures unitarity of the VBS cross section in the SM at high energy. We present measurements of the combined cross sections for all EW processes that result in the $Z\gamma jj$ final state. The main background source is $Z\gamma jj$ production where the associated jets are produced through QCD-induced processes (such as the Feynman diagram given in Fig. 1(f)). Other backgrounds include jets or leptons misidentified as photons, diboson processes in which a W or Z boson decays into two jets and the photon originates from initial or final-state radiation, and contributions from top quark pairs and single top quark production.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity, η, coverage provided by the barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid.

The particle-flow (PF) event algorithm [17, 18] reconstructs and identifies each individual particle with an optimized combination of information from the various elements of the CMS detector. The energy of photons is directly obtained from the ECAL measurement, corrected for zero-suppression effects. The energy of electrons is determined from a combination of the electron momentum at the primary interaction vertex as determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spa-
Figure 1: Representative diagrams for EW $Z \gamma jj$ production at the LHC: (a) bremsstrahlung, (b) multiperipheral, (c,d) VBF with TGC, (e) VBS including QGC, and (f) Example diagram for the QCD $Z \gamma jj$ production.

...tially compatible with originating from the electron track. The energy of muons is obtained from the curvature of the corresponding track. The energy of charged hadrons is determined from a combination of their momentum measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for zero-suppression effects and for the response function of the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energy.

In the barrel section of the ECAL, an energy resolution of about 1% is achieved for unconverted or late-converting photons in the tens of GeV energy range. The resolution for other photons in the barrel section is about 1.3% up to $|\eta| = 1$, rising to about 2.5% at $|\eta| = 1.4$. In the endcaps, the resolution for unconverted or late-converting photons is about 2.5%, and the resolution for the remaining photons in the endcap is between 3% and 4% [19]. When combining information from the entire detector, the jet energy resolution is typically 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV.

Muons are measured in the range of $|\eta| < 2.4$, with detection planes utilizing three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. Matching muons to tracks measured in the silicon tracker results in a p_T resolution for muons with $20 < p_T < 100\text{ GeV}$ of 1.3–2.0% in the barrel and better than 6% in the endcaps.

The electron momentum is estimated by combining the energy measurement in the ECAL with the momentum measurement in the tracker. The momentum resolution for electrons with transverse momentum $p_T \approx 45\text{ GeV}$ from $Z \rightarrow ee$ decays ranges from 1.7% for nonshowering electrons in the barrel region to 4.5% for showering electrons in the endcaps. The dielectron mass resolution for $Z \rightarrow ee$ decays is 1.9% when both electrons are in the ECAL barrel, and 2.9% when both electrons are in the endcaps.
A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [20].

3 Event reconstruction and selection

Candidate events are selected online with triggers that require two muons or electrons, where the leading and subleading leptons have $p_T > 17$ and 8 GeV respectively, with $|\eta| < 2.4$ (muons) or $|\eta| < 2.5$ (electrons). The overall trigger efficiency is about 94% and 90% for muons and electrons, respectively, with a small dependence on p_T and η.

Muons are reconstructed with a global fit using both the inner tracking system and the muon spectrometer. An isolation requirement is applied in order to suppress the background from multijet events [21][22]. Electron candidates are reconstructed by matching energy deposits in the ECAL with reconstructed tracks; they must pass stringent quality criteria and an isolation requirement [23]. Charged leptons must originate from the primary vertex, which is defined as the vertex whose tracks have the highest sum of p_T^2. We require that each event has exactly two oppositely charged muons (electrons) with $p_T > 20$ GeV and $|\eta| < 2.4$ (2.5) and that the invariant mass of the dilepton system must satisfy $70 < M_{\ell\ell} < 110$ GeV. The selection efficiencies for leptons are measured using the tag-and-probe method [24] and are approximately 96% for the muons [25] and 80% for the electrons [21].

Photon candidates are reconstructed from energy deposits in the ECAL with no associated track. Quality selection criteria [19] are applied to the reconstructed photons to suppress the background from hadrons misidentified as photons. The observables used in the photon selection are: (1) PF-based isolation variables that are corrected for the contribution from additional proton-proton collisions in the same bunch crossing (pileup); (2) a small ratio of hadronic energy in the HCAL to electromagnetic energy in the ECAL matched in (η, ϕ) (where ϕ is azimuthal angle in radians); (3) the transverse width of the electromagnetic shower along the η direction [19]; and (4) an electron track veto. We consider only photons in the ECAL barrel region ($|\eta| < 1.44$) with $p_T > 25$ GeV. Events with the photon candidate in one of the endcaps ($|\eta| > 1.57$) are excluded from the selection because their signal purity is lower and systematic uncertainties are large.

Hadronic jets are formed from the particles reconstructed by the PF algorithm, using the FASTJET software package [26] and the anti-k_T jet clustering algorithm [27] with a distance parameter of 0.5. To reduce the contamination from pileup, charged PF candidates in the tracker acceptance region $|\eta| < 2.4$, are excluded from the jet clustering procedure if associated with pileup vertices. The contribution of neutral particles from pileup events to the jet energy is taken into account by means of a correction based on the projected area of the jet on the front face of the calorimeter. Jet energy corrections are derived from a measurement of the p_T balance in dijet and photon+jet events in data [28]. Further residual corrections as functions of p_T and η are applied to the data to correct for the small differences between data and simulation. Additional quality criteria are applied to the jets in order to remove spurious jet-like features originating from isolated noise patterns in the calorimeters or in the tracker [29]. The two jets with the highest p_T are tagged as the signal jets and are required to have $p_T > 30$ GeV and $|\eta| < 4.7$. Since we are primarily interested in the VBS topologies, we require that the invariant mass of the two jets, $M_{jj} > 150$ GeV.

Table 1 presents a summary of the three different section criteria that are used for (1) the SM EW signal search, (2) the SM fiducial cross section measurement, and (3) the aQGC searches. The criteria isolate events consistent with the VBS topology of two high-energy scattered jets.
Data and simulation

We use data collected with the CMS detector, corresponding to an integrated luminosity of 19.7 fb\(^{-1}\), at proton-proton center-of-mass energy of 8 TeV.

The EW signal, Z\(\gamma_{jj}\), at leading-order (LO), and the main background, QCD Z\(\gamma\) with 0–3 additional jets, for which the next-to-leading-order (NLO) QCD prediction has been taken from Ref. [30], matched with parton shower based on the so-called “MLM prescription” [31] [32], are simulated using \textsc{MadGraph} v5.1.3.30 [33] interfaced with \textsc{Pythia} v6.424 [34] for hadronization and showering, using a CTEQ6L1 parton distribution function (PDF) set [35]. The second significant background contribution comes from processes where a jet is misidentified as a photon (fake photon), and this contribution is estimated from data. Other background contributions come from diboson processes (WW/WZ/ZZ) simulated by \textsc{Pythia}, single top processes simulated by \textsc{Powheg}, and t\(\bar{t}\)\(\gamma\) simulated using \textsc{MadGraph} interfaced with \textsc{Pythia}. The next-to-leading-order QCD cross sections are used to normalize these simulated samples, except for t\(\bar{t}\)\(\gamma\) where an LO prediction is taken.

All the simulated events are processed through a \textsc{Geant4} [36] simulation of the CMS detector. The tag-and-probe technique is used to correct for data-Monte Carlo (MC) differences in the

Table 1: Summary of the three different event criteria: (1) selection for the EW signal measurement; (2) the cross section measurement; and (3) the selection for the aQGC search. “j1” and “j2” represent the jets that have the largest and second-largest \(p_T\), “\(\ell_1\)” and “\(\ell_2\)” denote the lepton and antilepton from the decay of the Z boson, \(y\) is the rapidity, \(\Delta\phi_{Z\gamma_{jj}}\) is the absolute difference between \(\phi_{Z\gamma}\) and \(\phi_{jj}\), and the angular separation \(\Delta R = \sqrt{\Delta\eta^2 + \Delta\phi^2}\).
trigger efficiency, as well as the reconstruction and selection efficiencies. Additional proton-proton interactions are superimposed over the hard scattering interaction with the distribution of primary vertices matching that obtained from the collision data.

5 Background modeling

The dominant source of background to the EW signal is QCD $Z\gamma + \text{jets}$ production. The shape of this background is taken from MC simulation and the normalization is evaluated from data in a control region, defined as $150 < M_{jj} < 400$ GeV, where the signal contribution is below 1%. The simulated MC events correctly reproduce the yield of these events with a correction factor of 1.00 ± 0.22 for the combined $Z \rightarrow \mu^+\mu^-$ and $Z \rightarrow e^+e^-$ channels. The value is comparable with the NLO QCD K factor from Ref. [30], which is around 1.1 for $M_{jj} < 400$ GeV.

The background from fake photons arises mainly from $Z+jets$ events where one jet satisfies the photon ID criteria. The estimation is based on events similar to the ones selected with the baseline selection described in Table 1, except that the photon must fail the tight photon ID and satisfy a looser ID requirement based on the charged isolation variable. This selection ensures that the photon arises from a jet, but still has kinematic properties similar to a genuine photon satisfying the tight photon ID. We select genuine photons using $\sigma_{\eta\eta}$, a photon identification variable that exploits the small lateral extension of the electromagnetic shower [19, 25]. Based on the difference between the $\sigma_{\eta\eta}$ distributions for fake photons and genuine photons, a fit is made to normalize the number of events with fake photons to the number of events with genuine photons and obtain the probability to have a fake photon. The fake photon probability is calculated based on different p_T^{γ} regions in a manner similar to that described in Ref. [37].

Other backgrounds, including top quark and diboson production processes are estimated from MC simulations and normalized to the integrated luminosity of the data sample. The contribution from these backgrounds is less than 10% after applying the kinematic selection (Section 3) and is negligible once the final EW and aQGC selection criteria (Sections 7 and 8) are applied.

The M_{jj} distributions for the $Z \rightarrow \mu^+\mu^-$ and e^+e^- channels after the selection requirements described in Section 3 are shown in Fig. 2. The observed distributions are compared to the combined prediction of the backgrounds and of the EW $Z\gamma jj$ signal.

6 Systematic uncertainties

The systematic uncertainty in the QCD $Z\gamma+jets$ background estimation is 22% for both $Z \rightarrow \mu^+\mu^-$ and $Z \rightarrow e^+e^-$; it is dominated by the large statistical uncertainty in the control region used for normalization. The shape uncertainties that are related to the extrapolation of the normalization factor to the signal region ($M_{jj} > 400$ GeV) are determined by varying the renormalization and factorization scales as well as the MLM matching scale [31, 32] up and down by a factor of two. Finally, we combine both the normalization factor uncertainty and the shape uncertainty to obtain the total uncertainty.

The systematic uncertainty in the background estimation from fake photons arises from the variation in the choice of the charged isolation sideband and the $\sigma_{\eta\eta}$ distribution used for estimating the fake photon probability. The total uncertainties in the fake photon background estimation can be found in Table 2. The theoretical uncertainty in the top quark background is 20% [3].

The systematic uncertainties in the estimation of the trigger efficiency, measured using the
7 Measurement of the signal significance and fiducial cross section

As shown in Table 1, in addition to the common selection, we apply three further requirements to isolate the EW signal: $|y_{Z\gamma} - (y_{j1} + y_{j2})/2| < 1.2$, $|\Delta\eta_{jj}| > 1.6$, and $\Delta\phi_{Z\gamma jj} > 2.0$ radians. The selection requirements are chosen by optimizing the expected significance. We apply the CLs criterion described in Ref. [42, 43] to assess the signal significance, based on the binned tag-and-probe technique, are 1.2% and 1.7% for the $Z \rightarrow \mu^+\mu^-$ and $Z \rightarrow e^+e^-$ channels, respectively. Using similar methods, the systematic uncertainties in the efficiencies for lepton reconstruction and identification in the two channels are 1.9% and 1.0%, respectively. The systematic uncertainty in the jet energy scale and resolution is estimated by varying the jet energy scale and resolution up and down within their p_T- and η-dependent uncertainties [28]. The uncertainty is 14% for $M_{jj} > 400$ GeV. Another source of uncertainty is the modelling of the pileup. The inelastic cross section is varied by $\pm 5\%$ in order to evaluate this contribution. The uncertainty in the integrated luminosity is 2.6% [38].

There are also three sources of theoretical uncertainties applied to the signal only. The PDF uncertainty for the signal is estimated with the CT10 [39] PDF set, following the asymmetric Hessian method introduced in Refs. [40, 41]. The scale uncertainty is evaluated by varying the renormalization and factorization scales independently by a factor of two. The magnitude of the interference between QCD and EW $Z\gamma jj$ processes is assigned as systematic uncertainties in the two M_{jj} ranges.

All the systematic uncertainties described are applied to both the signal significance measurement and the aQGC search. They are also propagated to the uncertainty in the measured fiducial cross section, with the exception of the theoretical uncertainty associated with the signal cross section.

All the uncertainties in our analysis are summarized in Table 2.
Table 2: Summary of the major uncertainties.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCD $Z\gamma +$ jets normalization</td>
<td>22% ($400 < M_{jj} < 800$ GeV)</td>
</tr>
<tr>
<td></td>
<td>24% ($M_{jj} > 800$ GeV)</td>
</tr>
<tr>
<td>Fake photon from jet</td>
<td>15% (20–30 GeV)</td>
</tr>
<tr>
<td>(p_T^γ dependent)</td>
<td>22% (30–50 GeV)</td>
</tr>
<tr>
<td></td>
<td>49% (>50 GeV)</td>
</tr>
<tr>
<td>Trigger efficiency</td>
<td>1.2% ($Z \rightarrow \mu^+ \mu^-$), 1.7% ($Z \rightarrow e^+ e^-$)</td>
</tr>
<tr>
<td>Lepton selection efficiency</td>
<td>1.9% ($Z \rightarrow \mu^+ \mu^-$), 1.0% ($Z \rightarrow e^+ e^-$)</td>
</tr>
<tr>
<td>Jet energy scale and resolution</td>
<td>14% ($M_{jj} > 400$ GeV)</td>
</tr>
<tr>
<td>$tt\gamma$ cross section</td>
<td>20%</td>
</tr>
<tr>
<td>Pileup modeling</td>
<td>1.0%</td>
</tr>
<tr>
<td>Renormalization/factorization scale</td>
<td>9.0% ($400 < M_{jj} < 800$ GeV), 12% ($M_{jj} > 800$ GeV) (SM)</td>
</tr>
<tr>
<td>(signal)</td>
<td>14% (aQGC)</td>
</tr>
<tr>
<td>PDF (signal)</td>
<td>4.2% ($400 < M_{jj} < 800$ GeV), 2.4% ($M_{jj} > 800$ GeV) (SM)</td>
</tr>
<tr>
<td></td>
<td>4.3% (aQGC)</td>
</tr>
<tr>
<td>Interference (signal)</td>
<td>18% ($400 < M_{jj} < 800$ GeV), 11% ($M_{jj} > 800$ GeV) (SM)</td>
</tr>
<tr>
<td>Luminosity</td>
<td>2.6%</td>
</tr>
</tbody>
</table>

M_{jj} distribution, using only the two rightmost bins corresponding to $400 < M_{jj} < 800$ GeV and $M_{jj} > 800$ GeV. We consider QCD $Z\gamma jj$ production and events without $Z\gamma$ as background and EW $Z\gamma jj$ production as signal.

Table 3 summarizes the number of events predicted for each process with the number of events observed. For EW $Z\gamma jj$ production, the observations are found to be compatible with expectations in the different channels. By combining both channels, we find evidence for EW $Z\gamma jj$ production with an observed and expected significance of 3.0 and 2.1 standard deviations, respectively. We determine the ratio of the observed signal to that expected from the SM for LO EW $Z\gamma jj$ production as $\hat{\mu} = 1.5^{+0.9}_{-0.6}$ using a binned likelihood fit over the two ranges of the M_{jj} distribution.

Applying the same criteria, we can also measure the significance of the combined EW and QCD $Z\gamma jj$ process. As shown in Table 3, with the two decay channels combined in the search region, of the signal events 7.0 (38.4%) are estimated to come from EW production and the remaining 11.3 from QCD production. As a result, the observed (expected) significance for the combined EW and QCD $Z\gamma jj$ process is 5.7 (5.5) standard deviations.

To determine the cross section for EW $Z\gamma jj$ production we use a fiducial kinematic region based on the acceptance of the CMS detector with a minimal selection on the M_{jj} and $\Delta\eta_{jj}$ variables to select the VBS topology. The fiducial region is defined as described in Table 1. We define the cross section in the fiducial region as $\sigma_f = \sigma_g \hat{\mu} a_{sf}$ where σ_g is the cross section for generated signal events, $\hat{\mu}$ is the signal strength, and a_{sf} is the acceptance for the generated events in the fiducial region, evaluated through simulation. The fiducial cross section for EW $Z\gamma jj$ production is $1.86^{+0.90}_{-0.75}$ (stat) $^{+0.34}_{-0.26}$ (syst) ± 0.05 (lumi) fb, consistent with the theoretical prediction at LO of 1.27 ± 0.11 (scale) ± 0.05 (PDF) fb calculated using MADGRAPH.

The cross section for all processes that produce the $Z\gamma jj$ final state can be compared to theoretical predictions. The fiducial region studied here lies in a particularly interesting region of phase space because of the substantial contribution to $Z\gamma jj$ from EW production. By restricting the
Table 3: Signal and background yields after the final selection for the SM measurement, for the two bins of $400 < M_{jj} < 800 \text{ GeV}$ (upper) and $M_{jj} > 800 \text{ GeV}$ (lower). Only statistical uncertainties are reported.

<table>
<thead>
<tr>
<th>$400 < M_{jj} < 800 \text{ GeV}$</th>
<th>muon</th>
<th>electron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fake photon from jet</td>
<td>3.4 ± 0.8</td>
<td>1.7 ± 0.5</td>
</tr>
<tr>
<td>Other background</td>
<td>0.1 ± 0.1</td>
<td>0.1 ± 0.1</td>
</tr>
<tr>
<td>QCD Zγjj</td>
<td>4.8 ± 0.9</td>
<td>5.0 ± 1.0</td>
</tr>
<tr>
<td>EW Zγjj</td>
<td>1.7 ± 0.1</td>
<td>1.8 ± 0.1</td>
</tr>
<tr>
<td>Total background</td>
<td>8.3 ± 1.2</td>
<td>6.8 ± 1.1</td>
</tr>
<tr>
<td>Data</td>
<td>13</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$M_{jj} > 800 \text{ GeV}$</th>
<th>muon</th>
<th>electron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fake photon from jet</td>
<td>0.4 ± 0.3</td>
<td>0.1 ± 0.1</td>
</tr>
<tr>
<td>Other background</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
</tr>
<tr>
<td>QCD Zγjj</td>
<td>0.4 ± 0.1</td>
<td>1.1 ± 0.2</td>
</tr>
<tr>
<td>EW Zγjj</td>
<td>1.8 ± 0.1</td>
<td>1.8 ± 0.1</td>
</tr>
<tr>
<td>Total background</td>
<td>0.8 ± 0.3</td>
<td>1.2 ± 0.2</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

phase space to the fiducial region for the EW process as defined before, the expected fraction of EW events in the combined sample of EW and QCD signal events is 26%, and the cross section of the combined process is $5.94^{+1.53}_{-1.35} \text{ (stat)}^{+0.43}_{-0.37} \text{ (syst)} fb$, which is consistent with the theoretical prediction at LO calculated using MADGRAPH: $5.05 \pm 1.22 \text{ (scale)}^{+0.31}_{-0.26} \text{ (PDF)} fb$.

8 Search for anomalous quartic gauge couplings

The effects of any new physics between the TeV and the Planck scale might be significant in the high energy tails of measurements at the LHC and can be parameterized via effective anomalous couplings. With the discovery of the Higgs boson, higher-dimensional operators can be introduced in a linear way [44]:

$$
\mathcal{L}_{\text{aQGC}} = \frac{f_{M0}}{\Lambda^4} \text{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \times \left[(D_\beta \Phi) \dagger D_\beta \Phi \right] + \frac{f_{M1}}{\Lambda^4} \text{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \times \left[(D_\beta \Phi) \dagger D_\beta \Phi \right]
+ \frac{f_{M2}}{\Lambda^4} \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_\beta \Phi) \dagger D_\beta \Phi \right] + \frac{f_{M3}}{\Lambda^4} \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_\beta \Phi) \dagger D_\beta \Phi \right]
+ \frac{f_{T0}}{\Lambda^4} \text{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \text{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right] + \frac{f_{T2}}{\Lambda^4} \text{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\mu\nu} \right] \times \text{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\alpha\beta} \right]
+ \frac{f_{T8}}{\Lambda^4} B_{\mu\nu} B_{\alpha\beta} B^{\mu\nu} B^{\alpha\beta} + \frac{f_{T9}}{\Lambda^4} B_{\alpha\beta} B^{\mu\nu} B_{\mu\nu} B^{\alpha\beta},
$$

where $f_{M0,1,2,3}$ and $f_{T0,2,8,9}$ are coefficients of relevant effective operators, and Λ represents the scale of new physics responsible for anomalous couplings. The Lagrangian of the aQGCs is implemented within the MADGRAPH package.

We study the distribution of the mass of the dilepton and photon system, $M_{Z\gamma}$, to search for contributions from aQGCs. The effects of new physics would be seen at higher energy and modify the interference of VBS diagrams. To select the region sensitive to new physics, we require $p_T^{Z\gamma} > 60 \text{ GeV}$. The selection for the aQGC analysis is described in Table 1. The $Z\gamma$ mass distribution is shown in Fig. 3, where the last bin includes all events with $M_{Z\gamma} > 420 \text{ GeV}$. Because no significant excess is seen in the $M_{Z\gamma}$ distribution, we use the shape of the $M_{Z\gamma}$ distribution to extract limits on aQGC contributions.
Figure 3: The invariant mass distribution of the $Z\gamma$ system for events that pass the aQGC selection. The highest mass bin includes events with $M_{Z\gamma} > 420$ GeV. Error bars represent the statistical uncertainty in the data, while the systematic uncertainties in the aQGC signal and background estimate are shown as hatched bands.

With the parameterization of signals and related systematic uncertainties, for each aQGC parameter, we reweight the SM signal shape to the aQGC shape. The following test statistic is used:

$$t_{\alpha_{\text{test}}} = -2 \ln \frac{L(\alpha_{\text{test}}, \hat{\theta})}{L(\hat{\alpha}, \hat{\theta})},$$

where the likelihood function (L) is constructed for both lepton channels and combined, using a bin-wise Poisson distribution with profiled nuisance parameters (θ). α_{test} represents the aQGC point being tested. The symbol $\hat{\theta}$ represents the values corresponding to the maximum of the likelihood at the point α_{test}, while $\hat{\alpha}$ and $\hat{\theta}$ correspond to the global maximum of the likelihood. This test statistic is assumed to follow a χ^2 distribution [45], from which one can extract limits. Exclusion limits are shown in Table 4. Each coupling parameter is varied over a set of discrete values, keeping the other parameters fixed to zero.

An effective theory is only valid at energies lower than the scale of new physics, and high-dimensional operators with nonzero aQGC values can lead to unitarity violation at sufficiently high energies. For each aQGC listed in Table 4, we checked the stated upper limit against the unitary bound [46] obtained with VBFNLO [47]. In general, we find the limits on all aQGC parameters are set in the unitary unsafe region, except for f_{T9} where the unitarity bound is up to 6 TeV. Form factors can be introduced to unitarize the high energy contribution, however it is difficult to compare results from different experiments and it is not theoretically well motivated. In this study all of the aQGC limits shown are evaluated without a form factor, and can be directly compared to limits set in references [3–7, 9, 10, 12].
Table 4: Observed and expected shape-based exclusion limits for each aQGC parameter at 95% CL, without a form factor applied.

<table>
<thead>
<tr>
<th>Observed limits (TeV$^{-4}$)</th>
<th>Expected limits (TeV$^{-4}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-71 < f_{M_0}/\Lambda^4 < 75$</td>
<td>$-109 < f_{M_0}/\Lambda^4 < 111$</td>
</tr>
<tr>
<td>$-190 < f_{M_1}/\Lambda^4 < 182$</td>
<td>$-281 < f_{M_1}/\Lambda^4 < 280$</td>
</tr>
<tr>
<td>$-32 < f_{M_2}/\Lambda^4 < 31$</td>
<td>$-47 < f_{M_2}/\Lambda^4 < 47$</td>
</tr>
<tr>
<td>$-58 < f_{M_3}/\Lambda^4 < 59$</td>
<td>$-87 < f_{M_3}/\Lambda^4 < 87$</td>
</tr>
<tr>
<td>$-3.8 < f_{T_0}/\Lambda^4 < 3.4$</td>
<td>$-5.1 < f_{T_0}/\Lambda^4 < 5.1$</td>
</tr>
<tr>
<td>$-4.4 < f_{T_1}/\Lambda^4 < 4.4$</td>
<td>$-6.5 < f_{T_1}/\Lambda^4 < 6.5$</td>
</tr>
<tr>
<td>$-9.9 < f_{T_2}/\Lambda^4 < 9.0$</td>
<td>$-14.0 < f_{T_2}/\Lambda^4 < 14.5$</td>
</tr>
<tr>
<td>$-1.8 < f_{T_8}/\Lambda^4 < 1.8$</td>
<td>$-2.7 < f_{T_8}/\Lambda^4 < 2.7$</td>
</tr>
<tr>
<td>$-4.0 < f_{T_9}/\Lambda^4 < 4.0$</td>
<td>$-6.0 < f_{T_9}/\Lambda^4 < 6.0$</td>
</tr>
</tbody>
</table>

9 Conclusions

The measurement of the cross section for the electroweak production of a Z boson and a photon in association with two jets, where the Z boson decays into electron or muon pairs, was presented. The measurement is based on a sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb$^{-1}$. We find evidence for EW Zγjj production with an observed (expected) significance of 3.0 (2.1) standard deviations. The fiducial cross section for EW Zγjj production is measured to be $1.86^{+0.90}_{-0.75}$ (stat)$^{+0.34}_{-0.26}$ (syst) ± 0.05 (lumi) fb, consistent with the theoretical prediction. The fiducial cross section for combined EW and QCD Zγjj production is $5.94^{+1.53}_{-1.35}$ (stat)$^{+0.43}_{-0.37}$ (syst) ± 0.13 (lumi) fb, which is also consistent with the leading-order theoretical prediction.

In the framework of dimension-eight effective field theory operators, limits on the aQGC parameters $f_{M_{0,1,2,3}}$ and $f_{T_{0,1,2,8,9}}$ are set at 95% confidence level. This is the first constraints on the neutral aQGC parameters f_{T_8}.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United
Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.

References

References

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
S. Ahujaa, C.A. Bernardesb, S. Dograa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb,
P.G. Mercadanteb, C.S. Moona,5, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, J.C. Ruiz Vargas

\textbf{Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria}
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

\textbf{University of Sofia, Sofia, Bulgaria}
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

\textbf{Beihang University, Beijing, China}
W. Fanga

\textbf{Institute of High Energy Physics, Beijing, China}

\textbf{State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China}
Y. Ban, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu, D. Yang, Z. Zhang

\textbf{Universidad de Los Andes, Bogota, Colombia}

\textbf{University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia}
N. Godinovic, D. Lesalas, I. Puljak, P.M. Ribeiro Cipriano

\textbf{University of Split, Faculty of Science, Split, Croatia}
Z. Antunovic, M. Kovac

\textbf{Institute Rudjer Boskovic, Zagreb, Croatia}
V. Brigljevic, D. Ferencek, K. Kadija, S. Micanovic, L. Sudic

\textbf{University of Cyprus, Nicosia, Cyprus}

\textbf{Charles University, Prague, Czech Republic}
M. Finger8, M. Finger Jr.8

\textbf{Universidad San Francisco de Quito, Quito, Ecuador}
E. Carrera Jarrin

\textbf{Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt}
S. Elgammal9, A. Mohamed10, Y. Mohammed11, E. Salama9,12

\textbf{National Institute of Chemical Physics and Biophysics, Tallinn, Estonia}
B. Calpas, M. Kadastik, M. Murumaa, L. Perrini, M. Raidal, A. Tiko, C. Veelken

\textbf{Department of Physics, University of Helsinki, Helsinki, Finland}
P. Eerola, J. Pekkanen, M. Voutilainen

\textbf{Helsinki Institute of Physics, Helsinki, Finland}
J. Härkönen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Peltola, J. Tuominiemi, E. Tuovinen, L. Wendland
Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Georgian Technical University, Tbilisi, Georgia
A. Khvedelidze

Tbilisi State University, Tbilisi, Georgia
I. Bagaturia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany
University of Delhi, Delhi, India
Ashok Kumar, A. Bhargav, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India

Indian Institute of Technology Madras, Madras, India
P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty14, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India

Tata Institute of Fundamental Research-B, Mumbai, India

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, A. Kapoor, K. Kothekar, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Bakhshehsari, H. Behnamian, S. Chenarani27, E. Eskandari Tadavani, S.M. Etesami27, A. Fahim28, M. Khakzad, M. Mohammad Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh29, M. Zainali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbresciaa, b, C. Calabriaa, b, C. Caputoa, b, A. Colaleoa, c, D. Creanzeac, L. Cristellaa, b, N. De Filippisa, c, M. De Palmaa, b, L. Fiorea, c, G. Iasellia, c, G. Majgiisa, c, M. Majgiisa, G. Minielloa, b, S. Myaa, b, S. Nuzzoa, b, A. Pompiliia, b, G. Puglieseeac, R. Radognaa, b, A. Ranieriia, b, G. Selvaggiia, b, L. Silvestrisa, 14, R. Vendittia, b, P. Verwilligena

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendid, C. Battilana, D. Bonacorsiab, b, S. Braibant-Giacomelliab, L. Brigliadorib, a, M. Campaninia, ab, P. Capiluppia, b, A. Castroab, F.R. Cavallob, S.S. Chhibrab, G. Codispotiab, b, M. Cuffiana, b, M.G. Dallavallea, F. Fabrira, A. Fanfaniab, b, D. Fasanellaa, b, F. Giacomelliab, H. Grandia, L. Guiduccia, b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarraria, b, A. Perrottata, A.M. Rossia, b, T. Rovellida, b, G.P. Sirolia, b, N. Tosia, b, 14

INFN Sezione di Catania a, Università di Catania b, Catania, Italy
S. Albergoa, b, M. Chiorboliab, b, S. Costaab, A. Di Mattiaa, G. Giordanoa, b, R. Potenzaab, A. Tricominia, b, C. Tuveab, b

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbagliaa, V. Ciullia, b, C. Cividinib, R. D’Alessandroa, b, E. Focardiab, b, V. Gorib, P. Lenziba, M. Meschiniab, S. Paololettia, G. Sguazzonia, L. Vilianiab, 14
INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbi, D. Piccolo, F. Primavera

INFN Sezione di Genova, Università di Genova, Genova, Italy
V. Calvelli, F. Ferro, M. Lo Vetere, M.R. Mongeri, E. Robutti, S. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy

INFN Sezione di Napoli, Università di Napoli ‘Federico II’, Napoli, Italy

INFN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento, Trento, Italy

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
A. Braghieri, A. Magnani, P. Montagna, S.P. Ratti, V. Re, C. Riccardi, P. Salvini, I. Vai, P. Vitulo

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
L. Alunni Solestiz, G.M. Bilei, D. Ciangottini, L. Fanò, P. Lariccia, R. Leonardi, G. Mantovani, M. Menichelli, A. Saha, A. Santocchia

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy

INFN Sezione di Roma, Università di Roma, Roma, Italy

INFN Sezione di Torino, Università di Torino, Torino, Italy, Università del Piemonte Orientale, Novara, Italy
INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, C. La Licataa,b, A. Schizzia,b, A. Zanettia

Kyungpook National University, Daegu, Korea

Chonbuk National University, Jeonju, Korea
H. Kim, A. Lee

Hanyang University, Seoul, Korea
J.A. Brochero Cifuentes, T.J. Kim

Korea University, Seoul, Korea

Seoul National University, Seoul, Korea

University of Seoul, Seoul, Korea

Sungkyunkwan University, Suwon, Korea
Y. Choi, J. Goh, C. Hwang, D. Kim, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorni, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk35, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim38, E. Kuznetsova39, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
M. Chadeeva40, M. Danilov40, O. Markin

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin37, I. Dremin37, M. Kirakosyan, A. Leonidov37, S.V. Rusakov, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, M. Dubinin41, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic42, P. Cirkovic, D. Devetak, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
University Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, S. Sanchez Cruz, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan
Arun Kumar, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz,

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, G. Singh, N. Sriramobhas, N. Suwonjandee

Cukurova University - Physics Department, Science and Art Faculty

Middle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, S. Bilmis, B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya, O. Kaya, E.A. Yetkin, T. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, S. Sen

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio
Boston University, Boston, USA
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, K. Stenson, S.R. Wagner

Cornell University, Ithaca, USA

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
The CMS Collaboration

University of Florida, Gainesville, USA

Florida International University, Miami, USA
S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA
A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda

Lawrence Livermore National Laboratory, Livermore, USA
D. Lange, F. Rebasso, D. Wright

University of Maryland, College Park, USA
C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez,

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA
S. Malik

Purdue University, West Lafayette, USA
Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA
A.G. Delannoy, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, P. Lamichhane, J. Sturdy

University of Wisconsin - Madison, Madison, WI, USA

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
3: Also at Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
4: Also at Universidade Estadual de Campinas, Campinas, Brazil
5: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
6: Also at Université Libre de Bruxelles, Bruxelles, Belgium
7: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Now at British University in Egypt, Cairo, Egypt
10: Also at Zewail City of Science and Technology, Zewail, Egypt
11: Now at Fayoum University, El-Fayoum, Egypt
12: Now at Ain Shams University, Cairo, Egypt
13: Also at Université de Haute Alsace, Mulhouse, France
14: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
15: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
16: Also at Ilia State University, Tbilisi, Georgia
17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
18: Also at University of Hamburg, Hamburg, Germany
19: Also at Brandenburg University of Technology, Cottbus, Germany
20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
21: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
22: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
23: Also at Indian Institute of Science Education and Research, Bhopal, India
24: Also at Institute of Physics, Bhubaneswar, India
25: Also at University of Visva-Bharati, Santiniketan, India
26: Also at University of Ruhuna, Matara, Sri Lanka
27: Also at Isfahan University of Technology, Isfahan, Iran
28: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
29: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
30: Also at Università degli Studi di Siena, Siena, Italy
31: Also at Purdue University, West Lafayette, USA
32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
33: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
34: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
35: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
36: Also at Institute for Nuclear Research, Moscow, Russia
37: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
38: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
39: Also at University of Florida, Gainesville, USA
40: Also at P.N. Lebedev Physical Institute, Moscow, Russia
41: Also at California Institute of Technology, Pasadena, USA
42: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
43: Also at INFN Sezione di Roma; Università di Roma, Roma, Italy
44: Also at National Technical University of Athens, Athens, Greece
45: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
46: Also at National and Kapodistrian University of Athens, Athens, Greece
47: Also at Riga Technical University, Riga, Latvia
48: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
49: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
50: Also at Mersin University, Mersin, Turkey
51: Also at Cag University, Mersin, Turkey
52: Also at Piri Reis University, Istanbul, Turkey
53: Also at Gaziosmanpasa University, Tokat, Turkey
54: Also at Adiyaman University, Adiyaman, Turkey
55: Also at Ozyegin University, Istanbul, Turkey
56: Also at Izmir Institute of Technology, Izmir, Turkey
57: Also at Marmara University, Istanbul, Turkey
58: Also at Kafkas University, Kars, Turkey
59: Also at Istanbul Bilgi University, Istanbul, Turkey
60: Also at Yildiz Technical University, Istanbul, Turkey
61: Also at Hacettepe University, Ankara, Turkey
62: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
63: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
64: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
65: Also at Utah Valley University, Orem, USA
66: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
67: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
68: Also at Argonne National Laboratory, Argonne, USA
69: Also at Erzincan University, Erzincan, Turkey
70: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
71: Also at Texas A&M University at Qatar, Doha, Qatar
72: Also at Kyungpook National University, Daegu, Korea