Impact of PileUp mitigation with the Inner Tracker in the reconstruction of the Missing Transverse Energy in the ATLAS detector at HL-LHC

A precise measurement of the E_{miss} is fundamental to experimentally measure the transverse momentum carried by non-interacting particles produced in the proton-proton collisions. A good E_{miss} resolution is essential in any analysis at LHC and HL-LHC characterized by events with large E_{miss} both for searches of new physics and precise measurements of the Standard Model.

The high number of additional proton-proton interactions, called PileUp, expected under the HL-LHC conditions makes crucial an efficient rejection of PileUp jets and an accurate selection of tracks from the hard-scatter vertex to achieve a good reconstruction of the E_{miss}.

The Inner Tracker, ITk, for the Phase-II upgrade of ATLAS will extend the current pseudorapidity region, $|\eta|<2.5$, to the region of $|\eta|<4.0$. This will allow to apply vertex tagging techniques also to forward tracks and jets.

Motivation

PileUp at HL-LHC

The High Luminosity LHC, HL-LHC, is expected to deliver an instantaneous luminosity from $5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$ up to $7.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$, corresponding to a mean number of interaction per crossing, μ, from 140 up to 200, respectively. This leads to an high number of reconstructed primary vertices, N_{pv}.

PileUp jet rejection

Among the several PileUp mitigation techniques [2], the R_{p} is here considered. This variable is the scalar p_{T} sum of the tracks, originating from the hard-scatter vertex (PV) and associated with the jet, divided by the fully calibrated jet p_{T}

$$R_{\text{p}} = \frac{\sum p_{T}}{p_{T}}$$

Small values of R_{p} are less likely to correspond to PileUp jets.

Missing Transverse Energy, E_{miss}, and Total Transverse Energy, ΣE_{t}, definitions

E_{miss} is measured from reconstructed and calibrated objects according to the following formula [1]:

$$E_{\text{miss}} = E_{\text{miss}}^{x} + E_{\text{miss}}^{y} + E_{\text{miss}}^{\gamma} + E_{\text{miss}}^{\tau} + E_{\text{miss}}^{\mu} + E_{\text{miss}}^{\text{soft}}$$

Where the labels x, y, γ, τ, μ and soft refer to the negative of the sum of the x, y components of the momenta for the electrons, photons, jets, muons and the tracks originating from the hard-scatter vertex and not associated to any of the reconstructed calibrated objects, respectively. Muons included in the E_{miss} calculation are selected with loose criteria. The ΣE_{t} quantifies the activity in the event. It is defined as the scalar sum of the transverse momenta of the objects used to calculate the E_{miss}:

$$\Sigma E_{\text{t}} = \sum p_{T}$$

The ATLAS Inner Tracker, ITk

The inclined pixel barrel layers ITk Layout [8]. Resolution of 2σ as a function of true track p_{T} for single muons with p_{T} of 1, 10, or 100 GeV [3]. The ITk is an all-silicon tracker with an extended acceptance up to $|\eta|<4.0$. It will be able to precisely reconstruct the vertices of PileUp events and associate for the hard-scatter event the vertex to the tracks from the hard interaction. Its acceptance will allow to apply vertex tagging techniques to also reject PileUp forward jets.

PileUp mitigation for different luminous regions Scenarios at HL-LHC

The HL-LHC has the potential for partly mitigating the effects of the high PileUp by varying the size and the shape of the luminous region. The shape of the luminous region can be varied by varying the size and the shape of the luminous region. The size of the luminous region can be varied by varying the size and the shape of the luminous region.

Conclusions

- Inner Tracker layout, beam configuration optimisation and event PileUp suppression tools are essential to mitigate the effects from the large number of multiple proton-proton collisions at the HL-LHC.
- A wider luminous region along the beam-axis is beneficial for improving the PileUp rejection with the tracker.
- The extended acceptance of the ITk leads to a significant improvement in the E_{miss} resolution even in a dense PileUp environment.
- One of the most decisive Figure of Merit in the choice of the ITk Layout, which is expected to be taken in early 2017, is the impact of the tracking on the rejection of the jets from PileUp.
- New vertex tagging techniques for HL-LHC should take into account the observed degradation of the resolution of the tracking parameters in high pseudorapidity regions.

References:

1. University of Calabria (Italy)
2. INFN – Cosenza (Italy)