Electroweak penguin decays at LHCb

Małgorzata Pikies
Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Poland
on behalf of LHCb Collaboration

Lake Louise Winter Institute
24 February 2017
The LHCb experiment

Momentum resolution:
\[\frac{\delta p}{p} = 0.4 \% \text{ at } 5 \text{ GeV to } 0.6 \% \text{ at } 100 \text{ GeV} \]

Impact parameter resolution:
\[\sigma_{IP} \sim 20 \mu m \]

Primary vertex resolution:
13 \mu m in x and y, and 71 \mu m in z

Decay time resolution:
\[\sigma_\tau \sim 50 \text{ fs} \]

Excellent particle identification

- Single arm forward spectrometer
- Dedicated to heavy flavour physics
- Looks for indirect evidence of new physics in CP violation and rare decays

Rare Decays

- Mediated by electroweak Flavour Changing Neutral Current (FCNC) processes in the Standard Model (SM)
- They are suppressed in the SM, so more sensitive to New Physics
- There are many precise SM predictions

\[H_{\text{eff}} = - \frac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i [C_i(\mu)O_i(\mu) + C'_i(\mu)O'_i(\mu)] \]

- \(i = 1, 2 \) Tree
- \(i = 3 - 6, 8 \) Gluon penguin
- \(i = 7 \) Photon penguin
- \(i = 9, 10 \) Electroweak penguin
- \(i = S \) Higgs (scalar) penguin
- \(i = P \) Pseudoscalar penguin

- New particles in the loop level processes could significantly change observables
- The pattern of deviations can guide towards NP
Recent LHCb measurements

Branching fractions:

\[\Lambda_b \to \pi p \mu^+ \mu^- \text{ arXiv:1701.08705} \]
\[B^0 \to K^{*0} \mu^+ \mu^- \text{ JHEP 1611 (2016) 047} \]
\[B^\pm \to \pi^\pm \mu^- \mu^+ \text{ JHEP 10 (2015) 034} \]
\[B^0_s \to \phi \mu^+ \mu^- \text{ JHEP 09 (2015) 179} \]
\[\Lambda_b \to \Lambda \mu^+ \mu^- \text{ JHEP 06 (2015) 115} \]
\[B^0_s \to \pi^+ \pi^- \mu^+ \mu^- \text{ Phys.Lett B743 (2015) 46} \]
\[B^+ \to K^+ \pi^+ \pi^- \mu^+ \mu^- \text{ JHEP 10 (2014) 064} \]
\[B^+ \to \phi K^+ \mu^+ \mu^- \text{ JHEP 10 (2014) 064} \]
\[B^0 \to K^{*0} e^+ e^- \text{ JHEP 05 (2013) 159} \]

CP asymmetry:
\[B^\pm \to \pi^\pm \mu^- \mu^+ \text{ JHEP 10 (2015) 034} \]

Isospin asymmetry:
\[B \to K \mu^- \mu^+ \text{ JHEP 06 (2014) 133} \]

Phase difference:
\[B^+ \to K^+ \mu^+ \mu^- \text{ JHEP 11 (2016) 047} \]

Lepton Universality:
\[B^\pm \to K^\pm l^- l^+ \text{ Phys.Rev.Lett.113, 151601(2014)} \]

Angular:
\[B^0 \to K^+ \pi^- \mu^+ \mu^- \text{ JHEP 12 (2016) 065} \]
\[B^0 \to K^{*0} \mu^- \mu^+ \text{ JHEP 02 (2016) 104} \]
\[B^0_s \to \phi \mu^+ \mu^- \text{ JHEP 09 (2015) 179} \]
\[\Lambda_b \to \Lambda \mu^+ \mu^- \text{ JHEP 06 (2015) 115} \]
\[B^0 \to K^{*0} e^- e^+ \text{ JHEP 04 (2015) 064} \]
The first observation of the $\Lambda_b^0 \rightarrow \pi^- p \mu^+ \mu^-$ decay.

Statistical significance corresponding to 5.5σ.

Normalized to $\Lambda_b^0 \rightarrow J/\psi \pi^- p$. Chin. Phys. C40 (2016) 011001

The expected branching fraction is of $\mathcal{O}(10^{-8})$.

This is the first observation of a $b \rightarrow d$ transition in a baryonic decay.

$$B(\Lambda_b^0 \rightarrow \pi^- p \mu^+ \mu^-) = (6.9 \pm 1.9 \pm 1.1^{+1.3}_{-1.0}) \times 10^{-8}$$
Deviations from the SM in the $b \to s \ell \ell$ transitions could be explained by the short-distance contributions from non-SM particles.

They also could indicate a problem with SM predictions.

Contributions from $B \to X_{c \bar{c}}(\to \mu \mu)K$ could mimic vector-like new physics effects.

Measurement of the phase difference between short-distance and long-distance amplitudes:

- the full di-muon mass spectrum, candidates with 40 MeV/c^2 of B^+ mass,
- sum of relativistic Breit–Wigner amplitudes as a long-distance contributions,
- C_7 fixed to SM, hadronic form factors f_+ constrained Phys. Rev. D 93, 025026 (2016), magnitudes, phases, C_9 and C_{10} floated.
$B^+ \rightarrow K^+ \mu^+ \mu^-$ the phase difference

- J/ψ phase is compatible with $\pm \frac{\pi}{2}$, interference with short distance contribution far from pole is small.
- Fit to Wilson coefficients: $|C_{10}| < |C_{10}^{SM}|$ and $|C_9| > |C_9^{SM}|$, or if $|C_{10}| = |C_{10}^{SM}|$ then $|C_9| < |C_9^{SM}|$.
- The best C_9, C_{10} fit-point deviates at the level of 3.0σ from SM.
- These results are consistent with the results reported previously in global analyses.

$$B(B^+ \rightarrow K^+ \mu^+ \mu^-) = (4.37 \pm 0.15 (\text{stat}) \pm 0.23 (\text{syst})) \times 10^{-7}$$
First (P-wave only) measurement of the differential branching fraction of the $B^0 \to K^* (892)^0 \mu^+ \mu^-$ decay.

Precise theoretical predictions in the $1.1 < q^2 < 6.0$ GeV2/c4.

The first measurement of the S-wave fraction in the range $796 < m(K^+ \pi^-) < 996$ MeV/c2, $F_s = 0.101 \pm 0.017$ (stat) ± 0.009 (syst).

The differential branching fraction is determined to be

$$\frac{d\mathcal{B}}{dq^2} = (0.392)^{+0.020}_{-0.019} \text{(stat)} \pm 0.010 \text{(syst)} \pm 0.027 \text{(norm)} \times 10^{-7} c^4/\text{GeV}^2$$

- in agreement with SM predictions.

\[B^0 \rightarrow K^*0(\rightarrow K^+\pi^-)\mu^+\mu^- \text{ angular} \]

Described by:
- three helicity angles (\(\theta_1, \theta_K, \phi\)),
- the di-lepton invariant mass squared \(q^2\).

The CP-averaged angular decay distribution:

\[
\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^4(\Gamma + \bar{\Gamma})}{dq^2 d\Omega} = \frac{9}{32\pi} \left[\frac{3}{4}(1 - F_L) \sin^2 \theta_K
+ F_L \cos^2 \theta_K + \frac{1}{4}(1 - F_L) \sin^2 \theta_K \cos 2\theta_1
- F_L \cos^2 \theta_K \cos 2\theta_1 + S_3 \sin^2 \theta_K \sin^2 \theta_1 \cos 2\phi
+ S_4 \sin 2\theta_K \sin 2\theta_1 \cos \phi + S_5 \sin 2\theta_K \sin \theta_1 \cos \phi
+ \frac{4}{3} A_{FB} \sin^2 \theta_K \cos \phi + S_7 \sin 2\theta_K \sin \theta_1 \sin \phi
+ S_8 \sin 2\theta_K \sin 2\theta_1 \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_1 \sin 2\phi \right]
\]

A_{FB}, F_L, S_j - functions of Wilson coefficients

Additional sets of observables, for which the leading form-factor uncertainties cancel, e.g.:

\[P'_{4,5} = \frac{S_{4,5}}{\sqrt{F_L(1 - F_L)}} \]

JHEP 1305(2013)137
$B^0 \rightarrow K^{*0}(\rightarrow K^+\pi^-)\mu^+\mu^-$ angular

Signal candidates:

$5170 < m(K^+\pi^-\mu^+\mu^-) < 5700$ MeV/c2

K*0 candidates:

$796 < m(K^+\pi^-) < 996$ MeV/c2

Combinatorial background is reduced using a boosted decision tree:

- trained fully on data
- $B^0 \rightarrow J/\psi K^{*0}$ as a signal
- background sample: data
 $5350 < m(K^+\pi^-\mu^+\mu^-) < 7000$ MeV/c2

- variables used for training
 - PID - kinematics and geometric quantities - isolations

Signal yield: 2398 ± 57
The first full angular analysis of $B^0 \to K^{*0}(\to K^+\pi^-)\mu^+\mu^-$ decay (Run 1):

- tension in P'_5
- $3.4\,\sigma$ global deviations from the SM
- the SM central value for $\text{Re}(C_9)$ is 4.27, best fit-point corresponds to the $\Delta\text{Re}(C_9) = -1.04 \pm 0.25$

![Graph showing P'_5 vs. q^2]
\[\Lambda_b \rightarrow \Lambda(p\pi^-)\mu^+\mu^- \]

- Normalized to \(\Lambda_b \rightarrow \Lambda J/\psi \).
- No evidence for signal in \(2 < q^2 < 8 \text{ GeV}^2/c^4 \).
- More statistics needed.

JHEP06(2015)115
\(B_s^0 \rightarrow \phi(\rightarrow K^+K^-)\mu^+\mu^- \)

- Similar to \(B^0 \rightarrow K^{*0}\mu^+\mu^- \), experimentally very clean (narrow \(\phi \) resonance).
- Final state not self-tagging - less observables are accessible.
- Angular distributions - good agreement with SM.
- Branching fraction - differs from SM by \(3.3 \sigma \) at low \(q^2 \)

\[F_L \]

\[d\beta(B^0_s \rightarrow \phi\mu\mu) dq^2 [10^{-8} GeV^2/c^4] \]

JHEP09(2015)179

LLWI 2017

Electroweak penguin decays at LHCb

M. PIKIES

13/15
Rare decays are a powerful tool for searching for BSM effects. Intresting tensions with SM predictions emerged in the rare decays: $B^0 \rightarrow K^* \mu^+ \mu^-$ angular observables, $B_s^0 \rightarrow \phi \mu^+ \mu^-$ brancing fraction. Motivates further work both in theory and experiment. Many more analyses in the pipeline.
Thank you for your attention :)