MEASUREMENT OF MATTER-ANTIMATTER DIFFERENCES IN BARYON DECAYS AT LHCb

ANDREA MERLI 1 on behalf of the LHCb collaboration
1 Università degli Studi di Milano & INFN

- PHYSICS MOTIVATION
 - LHCb has the unique possibility to search for CPV in b-baryon decays.
 - Large CPV effects are expected within the Standard Model in charmless b-baryon decays, up to $A_{CP} \approx 20\%$.
 - It is important to measure CPV effects in T-odd asymmetries as well as A_{CP}-type asymmetries since New Physics contributions could produce different effects in each.

- ANALYSIS STRATEGY
 - Search for CPV using triple product asymmetries in 4-body Λ_c^0 charmless decays: $\Lambda_c^0 \to p\pi^+\pi^-$ and $\Lambda_c^0 \to p\pi^+K^-K^+$.
 - Transitions governed by $b \to sW^+\ell^-$ and $b \to sW^-\ell^+$ penguin amplitudes of similar magnitude.
 - Relative weak phase dominated by large CKM phase $\arg(\rho) = \gamma$
 - Perform measurements in regions of phase space for increased sensitivity to localised CPV effects. Different strong phases at play.
 - Use $\Lambda_c^0 \to p(\pi^0\pi^+)\pi^-$, a F_+ mediated decay with no CPV expected as control sample to assess main source of systematic uncertainties.

- EXPERIMENTAL TECHNIQUE
 - Triple products in Λ_c^0 rest frame
 $C_p = \frac{\bar{p}_z \bar{p}_x + \bar{p}_y}{\sqrt{2}} = \sin \Phi$
 $C_t = \frac{\bar{p}_z \bar{p}_x - \bar{p}_y}{\sqrt{2}} = \sin \phi$
 - T-odd asymmetries
 $A_\delta = N_{C>0} - N_{C<0} / N_{C>0} + N_{C<0}$
 $A_\lambda = N_{c>0} - N_{c<0} / N_{c>0} + N_{c<0}$
 - By construction A_δ, A_λ, α^{CP}, α^{odd} are largely insensitive to
 - particle/antiparticle production asymmetries
 - detector-induced charge asymmetries
 - reduced systematic uncertainties
 - CP-violating observable:
 $a_{CP}^{odd} = \frac{1}{2} (A_\delta - A_\lambda)$
 - P-violating observable:
 $a_{P}^{odd} = \frac{1}{2} (A_\delta + A_\lambda)$

- INTEGRATED OVER PHASE SPACE
 - A_{CP} consistent with 0.

- IN REGIONS OF PHASE SPACE
 - X^2 test:
 - P symmetry: P^+ value $=4.3 \times 10^{-2}$ (2.9σ deviation)
 - CP symmetry: P^+ value $=4.9 \times 10^{-1}$ (2.0σ deviation)

- SCHEME A
 - Combination of two binning schemes:
 - First evidence of CPV from CP symmetry
 - First evidence of CPV in baryons

- CONCLUSION
 - First evidence of CPV in baryon decays $\Lambda_c^0 \to p\pi^+\pi^-$.
 - Published in Nature Physics doi:10.1038/nphsy4021.
 - Data sample doubled with Run II data.
 - Observation within the sensitivity of the next update.

- BIBLIOGRAPHY