High-Granularity Timing Detector for the Phase-II upgrade of the ATLAS Calorimeter system

Evangelos –Leonidas Gkougkousis
ON BEHALF OF THE ATLAS LAr – HGT D GROUP

Novosibirsk – March 1st, 2017
• Overview

• HL-HLC Conditions
 • $\mu = 200$ pileup conditions
 • Calorimeter performances
 • Pileup efficiency

• HGTD Motivation
 • Time-Pileup rejection
 • Important EW channels

• The Detector
 • Geometry
 • Jet, electron and muons performances

• Sensors
 • Technologies, LGADs
 • Design and testing
 • Test Beam Results
 • Radiation Hardness

• Electronics
• Conclusions and Outlook
• HL-HLC Conditions

HL-LHC Conditions

Luminosity
- Phase I: $< 2.2 \times 10^{34}$ cm$^{-2}$s$^{-1}$ (300 fb$^{-1}$)
- Phase-II: $5 - 7.5 \times 10^{34}$ cm$^{-2}$s$^{-1}$ (3000 fb$^{-1}$)

Conditions
- 14 TeV beam
- 6000 primary tracks per event
- No. of collisions per crossing from 23 to 200 at 150 ps in 50 mm space
- Extended tracking up to $|\eta| < 4.0$
• HL-HLC Conditions

Calorimeter and Pileup efficiency

- EM calorimeter noise increases by an order of magnitude
- Pileup rejection is impacted at high η
- Energy resolution in the EM calorimeter heavily degrades for the low P_T (> 20GeV) regions towards the end caps
- Up to 20% reduction on the energy resolution for the interesting 20 – 50 GeV P_T region
• **HGTD Motivation**

Time – Pileup Rejection

- High probability of vertices in close proximity
- Time information helps pileup rejection
- Pileup distribution extremely peaked at forward $1.8 < |\eta| < 3.2$ were tracker not completely implemented
- Track confirmation rejection at 2% for central region but degrades towards end caps

![Graph showing pileup rejection](image)

![Graph showing efficiency and particle time distributions](image)
HGTD Motivation

Important EW channels

- Potential of HGTD as a L (40MHz) Time trigger for the VBF 0-channel
- Lower jet P_T thresholds and extend accessible phase space
- Largest potential in hadronic final state VBF channels (also offline), preferentially forward peaked:

 \[H \rightarrow bb, \ H \rightarrow Inv., \ HH \rightarrow bbbb \]

Pre-shower option:

- Improve forward electron /photon reconstruction
- Interesting for search in
 \[H \rightarrow aa \rightarrow \gamma\gamma jj \]

<table>
<thead>
<tr>
<th>Trigger</th>
<th>SD value</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>di-γ</td>
<td>25-25 GeV</td>
<td>di-photon</td>
</tr>
<tr>
<td>di-τ</td>
<td>40-30 GeV</td>
<td>$H \rightarrow \tau\tau$</td>
</tr>
<tr>
<td>4-jet</td>
<td>75 GeV</td>
<td>$H \rightarrow bb, HH \rightarrow 4b$</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>200 GeV</td>
<td>$H \rightarrow \text{Inv.}$</td>
</tr>
</tbody>
</table>
HGT-D System

Geometry

- HGT-D-Si: 4 si layers
- HGT-D-SiW: 4 si layers + 3X_0 W 2.4 < \eta < 3.2 (R_{min} = 285 mm)

Specifications for 2023

<table>
<thead>
<tr>
<th>Coverage</th>
<th>2.4 < \eta < 4.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{min}</td>
<td>11 cm</td>
</tr>
<tr>
<td>R_{max}</td>
<td>65 cm</td>
</tr>
<tr>
<td>\Delta z</td>
<td>\sim 6 cm</td>
</tr>
<tr>
<td>\Delta t</td>
<td>< 50 ps</td>
</tr>
<tr>
<td>Cell Size</td>
<td>1 mm^2</td>
</tr>
</tbody>
</table>

E. L. Gkougkousis

1 / 3 / 2017

INSTR17
• **HGTID System**

Performance

Muons
- 1 TeV muons simulation
- 98.88% efficiency for 4 layers
- 0.044 MeV/muon at 150 μm
- 50% of inefficiency from zones

Electrons
- $Z \rightarrow ee$ sample at $\mu = 200$
- 45 GeV P_T e and γ
- 6 mm radius EM clusters
- 70 HGTID cells per cluster
- Dynamic range of 50 psec/MIP

Jets
- H(125 GeV) → Inv. sample with jet $P_T = 72$ GeV
- Expected peak in time distribution
- ~90% signal purity at $\Delta R < 0.1$
• Sensors

Technology and requirements

Low Gain Avalanche Diodes (LGAD)
✓ Most promising technology
✓ Secondary implant introducing moderate gain
✓ HPK, CNM, FBK produced sensors

Jitter
Timewalk
Conversion time

\[
\sigma_{\text{tot}}^2 = \sigma_{\text{elec.}}^2 + \sigma_{\text{Landau}}^2
\]

\[
\sigma_{\text{elec}}^2 = \left(\frac{t_{\text{rise}}}{S/N} \right)^2 + \left(\frac{V_{\text{thr}}}{S/t_{\text{rise}}}_{\text{RMS}} \right)^2 + \left(\frac{TDC_{\text{bin}}}{\sqrt{12}} \right)^2
\]

Where:
- \(S \) signal
- \(N \) noise
- \(V_{\text{thr}} \) CFD threshold
- \(t_{\text{rise}} \) rise time

Fast time resolution:
✓ Maximize slope (large fast signals)
✓ Correct time walk with CFD
✓ Minimize noise
✓ Thin sensors with integral gain
• Sensors

Design and test

- CNM SoI wafers on 300µm handle wafer
- High resistivity sensor region
- Varied amplification implants
- Single diodes and 2x2 arrays

<table>
<thead>
<tr>
<th>Detector</th>
<th>Size (mm)</th>
<th>Dose</th>
<th>Thickness</th>
<th>C_p (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single pad</td>
<td>1.2 x 1.2</td>
<td>1.9 • 10^{13}</td>
<td>45 µm</td>
<td>3.5 pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0 • 10^{13}</td>
<td>45 µm</td>
<td>3.5 pF</td>
</tr>
<tr>
<td>2 x 2 Arrays</td>
<td>2 x 2</td>
<td>1.8 • 10^{13}</td>
<td>45 µm</td>
<td>11 pF</td>
</tr>
<tr>
<td>3 x 3</td>
<td></td>
<td>1.9 • 10^{13}</td>
<td>45 µm</td>
<td>23 pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0 • 10^{13}</td>
<td>45 µm</td>
<td>23 pF</td>
</tr>
</tbody>
</table>
• Sensors

Design and test

<table>
<thead>
<tr>
<th>Detector</th>
<th>Size (mm)</th>
<th>Dose</th>
<th>Thickness</th>
<th>C_p (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single pad</td>
<td>1.2 x 1.2</td>
<td>1.9 (\times) 10^{13}</td>
<td>45 μm</td>
<td>3.5 pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0 (\times) 10^{13}</td>
<td>45 μm</td>
<td>3.5 pF</td>
</tr>
<tr>
<td>2 x 2 Arrays</td>
<td>1.8 (\times) 10^{13}</td>
<td>45 μm</td>
<td>11 pF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.9 (\times) 10^{13}</td>
<td>45 μm</td>
<td>11 pF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0 (\times) 10^{13}</td>
<td>45 μm</td>
<td>23 pF</td>
<td></td>
</tr>
<tr>
<td>3 x 3</td>
<td>1.9 (\times) 10^{13}</td>
<td>45 μm</td>
<td>23 pF</td>
<td></td>
</tr>
</tbody>
</table>
• Sensors

Testbeam Results

Single Diodes

Time Resolution

ATLAS Preliminary
HGTGD test beam Aug. 2016
120 GeV pions
(1.2 x 1.2)mm² wide 45μm thick

Gain

Efficiency / mean

2x2 Arrays (3 x 3 mm)

ATLAS Preliminary
HGTGD test beam Oct 2016
120 GeV pions

Gain

Bias voltage [V]

Efficiency / mean

1% efficiency variation

Signal Slope

ATLAS Preliminary
HGTGD test beam Aug. 2016
120 GeV pions
(1.2 x 1.2)mm² wide 45μm thick

Bias voltage [V]

Rise time 20-80% [ps]

26 psec @ gain of 50

E. L. Gkougkousis

1 / 3 / 2017

INSTR17

12
• Sensors

Radiation Hardness

- Similar results Fluka - GCALOR
- Max. ($\eta = 4.2$) after 3000 fb$^{-1} \sim 4 \times 10^{15}$ n/cm2
- W increases the dose by a factor 3 for $R > 30$cm in HGTD, possible mitigation by 5mm moderator

- Thermal neutron irradiation single pad diodes
- Rise time within 10% between fluences
- Time resolution in the order of 40 ps for gain of 10 - 15
• Electronics

ASIC prototype

Chip Layout with wire bonds in the periphery

ASiC bump-bonded to 2x2 array in multiple points

ATLAS LGAD Timing Integrated ReadOut Chip (ALTiRoC)

- TSMC 130nm CMOS Technology
- 3.4 x 3.4 mm total area
- 300µm substrate thickness
- Directly bonds to 2 x 2 arrays
- Four readout channels dedicated for 2 pf/channel, 10 pf/channel and 20 pf/channel sensors
- Channel area 200 x 100 µm
- Integrated Preamplifiers, ToT and CFD
- Under fabrication, expected in April

<table>
<thead>
<tr>
<th>Detector</th>
<th>1 mm pad</th>
<th>3 mm pad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power con.</td>
<td>800 µA</td>
<td>3.2 mA</td>
</tr>
<tr>
<td>$V_{in} (Q_{in}/C_d)$</td>
<td>2.5 mV</td>
<td>0.625 mV</td>
</tr>
<tr>
<td>Sim. V_{out}</td>
<td>21 mV</td>
<td>17.7 mV</td>
</tr>
<tr>
<td>Noise</td>
<td>0.44 mV</td>
<td>0.66 mV</td>
</tr>
<tr>
<td>S/N</td>
<td>48</td>
<td>27</td>
</tr>
</tbody>
</table>

Inner Layers
- Jitter (at G = 10) | 23 ps
- Jitter (at G = 20) | 11.5 ps

Large Radius
Conclusions and Outlook

Sensors, ASIC, Integration and Radiation Hardness

So far....

Physics

✓ Very promising results for pileup rejection in the high η region where VBF and exotics will benefit
✓ High jet single purity for invisible searches, L0 trigger for VBF channel at 40MHz

Sensors

✓ 26 ps time resolution for single 1mm2 diodes
✓ 95% uniformity with low inefficiencies in the inter-pad regions
✓ Operations up to 2×10^{15} at moderate gains with degradation of time resolution due to breakdown

Integration

✓ Fixed and simulated geometry and vital space
✓ Flex and mechanics designs considered
✓ Tests with different detector sizes and electronics
✓ First ASIC prototype designed and submitted
• Conclusions and Outlook

Sensors, ASIC, Integration and Radiation Hardness

To do...

Physics
- Investigate performance improvements in individual analysis channels at the context of HL-LHC
- Integrate and produce fully simulated samples with final geometry

Sensors
- Scale from single pads and 2 x 2 arrays to 2cm x 2cm matrices
- Improve radiation hardness for neutron irradiated, do proton-pion irradiation
- Key players with design optimization (HPK, CNM, FBK) to improve inefficiencies

Integration
- Final geometry and segmentation decisions with respect to occupancy and readout
- ASIC Test in upcoming test beams, optimization and scaling to full size matrices
- Services and flex design and simulation, final decisions about integration
The work at SCIPP was supported by the USA Department of Energy, Grants DE-FG02-13ER41983 and DE-FG02-04ER41286.

Part of this work has been financed by the European Union’s Horizon 2020 Research and Innovation funding program, under Grant Agreement no. 654168 (AIDA-2020) and Grant Agreement no. 669529 (ERC UFSD669529), and by the Italian Ministero degli Affari Esteri and INFN Gruppo V.

This work was partially performed within the CERN RD50 collaboration.

Part of this work has been financed by the Spanish Ministry of Economy and Competitiveness through the Particle Physics National Program (FPA2015-69260-C3-3-R and FPA2014-55295-C3-2-R).