The EuCARD-2 Enhanced European Coordination for Accelerator Research & Development project is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453.

This work is part of EuCARD-2 Work Package 5: Extreme Beams (XBEAM).

The electronic version of this EuCARD-2 Publication is available via the EuCARD-2 web site [http://eucard2.web.cern.ch/] or on the CERN Document Server at the following URL: [http://cds.cern.ch/search?p=CERN-ACC-SLIDES-2017-0005]
Future Circular Collider Study

Frank Zimmermann

gratefully acknowledging input from FCC coordination group
the global design study team and all contributors

LHC SPS PS FCC

http://cern.ch/fcc

Work supported by the European Commission under Capacities 7th Framework Programme project EuCARD-2, grant agreement 312453, and the HORIZON 2020 project EuroCirCol, grant agreement 654305

J. Wenninger
colliders and discoveries

powerful instruments for discovery and precision measurement
International FCC collaboration (CERN as host lab) to study:

- **pp-collider** (*FCC-hh*)
 - main emphasis, defining infrastructure requirements
 - \(\sim 16 \text{ T} \Rightarrow 100 \text{ TeV } pp \text{ in } 100 \text{ km}\)

- **80-100 km tunnel infrastructure** in Geneva area, site specific

- **e^+e^- collider** (*FCC-ee*), as potential first step

- **p-e** (*FCC-he*) option, integration one IP, FCC-hh & ERL

- **HE-LHC** with *FCC-hh* technology
FCC-hh: 100 TeV pp collider as long-term goal → defines infrastructure needs
FCC-ee: e^+e^- collider, potential intermediate step
HE-LHC: based on FCC-hh technology

key enabling technologies
pushed in dedicated R&D programmes, e.g.
16 Tesla magnet program, cryogenics,
SRF technologies and RF power sources

tunnel infrastructure in Geneva area, linked to CERN accelerator complex;
site-specific, as requested by European Strategy
elaborate and document
- physics opportunities
- discovery potentials

experiment concepts for hh, ee and he
Machine Detector Interface (MDI) studies
R&D needs for **detector technologies**

overall **cost model for collider scenarios**
including infrastructure and injectors

develop **realization concepts**
forge **partnerships with industry**
must advance fast now to be ready for the period 2035 – 2040; goal of phase 1: CDR by end 2018 for next update of European Strategy
site investigations

C. Cook, J. Osborne

Future Circular Collider Study
Frank Zimmermann
Conf12 Workshop, 4 September 2016
• 90 – 100 km fits geological situation well
• LHC suitable as potential injector
• the 100 km version, intersecting LHC, is now being studied in more detail
FCC tunnel layout

‘baseline’ layout

- 100 km tunnel 6 m inner diameter
- 4 large experimental caverns
- 8 service caverns for infrastructure
- 12 & 4 vertical shafts (3 km integral)
- 2 transfer tunnels (10 km)
- 2 beam dump tunnels (4 km)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>FCC-hh</th>
<th>HE-LHC*</th>
<th>(HL) LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>collision energy cms [TeV]</td>
<td>100</td>
<td>25</td>
<td>14</td>
</tr>
<tr>
<td>dipole field [T]</td>
<td>16</td>
<td>16</td>
<td>8.3</td>
</tr>
<tr>
<td>circumference [km]</td>
<td>100</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>beam current [A]</td>
<td>0.5</td>
<td>1.27</td>
<td>(1.12) 0.58</td>
</tr>
<tr>
<td>bunch intensity [10^{11}]</td>
<td>1 (0.2)</td>
<td>1 (0.2)</td>
<td>2.5</td>
</tr>
<tr>
<td>bunch spacing [ns]</td>
<td>25 (5)</td>
<td>25 (5)</td>
<td>25</td>
</tr>
<tr>
<td>IP β^*_x,y [m]</td>
<td>1.1</td>
<td>0.3</td>
<td>0.25</td>
</tr>
<tr>
<td>luminosity/IP [10^{34} cm$^{-2}$s$^{-1}$]</td>
<td>5</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>peak #events/bunch crossing</td>
<td>170</td>
<td>1020 (204)</td>
<td>1070 (214)</td>
</tr>
<tr>
<td>stored energy/beam [GJ]</td>
<td>8.4</td>
<td>1.4</td>
<td>(0.7) 0.36</td>
</tr>
<tr>
<td>synchrotron rad. [W/m/beam]</td>
<td>30</td>
<td>4.1</td>
<td>(0.35) 0.18</td>
</tr>
<tr>
<td>transv. emit. damping time [h]</td>
<td>1.1</td>
<td>4.5</td>
<td>25.8</td>
</tr>
<tr>
<td>initial proton burn off time [h]</td>
<td>17.0</td>
<td>3.4</td>
<td>2.3</td>
</tr>
</tbody>
</table>

*tentative
pp/p-pbar in the $L-E$ plane
phase 1: $\beta^* = 1.1 \text{ m, } \Delta Q_{tot} = 0.01, t_{ta} = 5 \text{ h, } 250 \text{ fb}^{-1} / \text{ year}$

phase 2: $\beta^* = 0.3 \text{ m, } \Delta Q_{tot} = 0.03, t_{ta} = 4 \text{ h, } 1 \text{ ab}^{-1} / \text{ year}$

radiation damping: $\tau \sim 1 \text{ h}$

Total integrated luminosity over 25 years operation $O(20) \text{ ab}^{-1}$ consistent with physics goals
FCC-hh - 100 TeV c.m., 25 ns

- Burn off slower than emittance damping → emittance control
HE-LHC - 25 TeV c.m., 25 ns

- Luminosity ($10^{34} \text{ cm}^2\text{s}^{-1}$)
 - β^* = 25 cm or 15 cm

- Bunch population (10^{11})
 - Ultimate β^*
 - Baseline

- Normalized emittance [μm]
 - Ultimate β^*
 - Baseline

- Total tune shift
 - Baseline
 - Ultimate β^*

- Burn off faster than emittance shrinkage → tune shift decreases during fill
integrated lattice exists;

recent designs:
 - energy collimation
 - extraction
 - experiment
 - betatron collimation
 - injection

first results on:
 - dynamic aperture
 - tolerances and alignment
 - detailed magnet specifications
FCC-hh full-ring optics

full ring lattice permits:

• beam dynamics studies
• optimisation of each insertion
• definition of system specifications (apertures, etc.)
• improvement of baseline optics and layout

D. Schulte, B. Holzer, R. Haerer, A. Seryi, et al.
key technologies for FCC-hh

16 T arc dipole magnets based on Nb_3Sn

- conductor development, magnet design
- highest priority! (talk by Gijs de Rijk)

arc beam screen
cryogenics system
SC septa
SC detector magnets
R&D on superconducting septa

need extraction system for safely removing beam from collider;
hybrid system: short overall length with high robustness & availability

SuShi concept:
SC shield creates field-free region inside strong dipole field

3 candidate technologies:
(1) NbTi/Nb/Cu multilayer sheet
(2) HTS tape
(3) Bulk MgB$_2$
high synchrotron radiation load of proton beams @ 50 TeV:

- ~30 W/m/beam (@16 T) (LHC <0.2W/m)
- 5 MW total in arcs (@1.9 K!!)

new beam screen with ante-chamber

- absorption of synchrotron radiation at 50 K to reduce cryogenic power
- factor 50! reduction of cryo power
goals:
- drastically lower FCC-hh beam impedance
- allow for (even) higher beam-screen temperature

candidate materials:

TI-1223 (promising performance, opens up >100 K temperature window, scalable coating, R&D with CNR-SPIN and TU-Vienna)

YBCO (proven performance, requires forming technology, R&D with ICMAB-ALBA-IAFE)

HTS can have surface resistance lower than Cu at $T < 77$ K and $f < 10$ GHz
some design challenges:

- large η acceptance
- radiation levels of $>50 \times$ LHC Phase II
- pileup of ~ 1000

R&D for FCC detectors is a natural continuation of the R&D for LHC Phase II upgrade

H. ten Kate, W. Riegler et al.
design of interaction region

- consistent for machine and detector
 - $L^* = 45$ m
 - integrated spectrometer and compensation dipoles
- optics with long triplet with large aperture
 - helps distributing collision debris
 - more beam stay clear

proton losses in dispersion suppressor are an issue

dose for 3000 fb$^{-1}$

30 MGy = present limit

i. triplet shielding
- 5mm
- 10mm
- 15mm
- 20mm

radation dose for final quadrupoles

I. Besana, F. Cerutti, A. Seryi, et al.
aperture model of machine exists; system design developed; first efficiency studies
 • high losses in dispersion suppressor
 • heat load on primary collimators close to the limit

upcoming:
 • study load on secondary collimators
 • shower simulations
 • operational robustness improvements:
 - crystal collimation?
 - hollow electron lens?
 • impact of 5 ns operation on design

M. Fiascaris, J. Molson, S. Redaelli, D. Schulte
injector options:

- SPS \rightarrow LHC \rightarrow FCC
- SPS/SPS\text{upgrade} \rightarrow FCC
- SPS \rightarrow FCC booster \rightarrow FCC

Current baseline is to fully re-use the existing CERN accelerator complex:

- injection energy 3.3 TeV from LHC

Injection from SPS tunnel means lower injection energy \sim1.5 TeV
lower injection energy (1.5 TeV)?

beam studies proposed at LHC (injection at 225 GeV instead of 450 GeV) and at RHIC (p inj. at 7.3 GeV)
FCC-hh as A-A collider

<table>
<thead>
<tr>
<th></th>
<th>Pb-Pb</th>
<th>Pb-p</th>
</tr>
</thead>
<tbody>
<tr>
<td>beam energy [TeV]</td>
<td>4100</td>
<td>50</td>
</tr>
<tr>
<td>c.m. energy/nucleon pair [TeV]</td>
<td>39.4</td>
<td>62.8</td>
</tr>
<tr>
<td>no. bunches / beam</td>
<td>2072</td>
<td>2072</td>
</tr>
<tr>
<td>IP beta function [m]</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>long. emit. rad. damping time [h]</td>
<td>0.24</td>
<td>0.5</td>
</tr>
<tr>
<td>init. luminosity [10^{27} cm^{-2}s^{-1}]</td>
<td>24.5</td>
<td>2052</td>
</tr>
<tr>
<td>peak luminosity [10^{27} cm^{-2}s^{-1}]</td>
<td>57.8</td>
<td>9918</td>
</tr>
</tbody>
</table>

Based on existing LHC complex; fast radiation damping; secondary beams from IP require dedicated collimators,…

Physics at the FCC-hh

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/FutureHadroncollider

- Volume 1: SM processes (238 pages)
- Volume 2: Higgs and EW symmetry breaking studies (175 pages)
- Volume 3: beyond the Standard Model phenomena (189 pages)
- Volume 4: physics with heavy ions (56 pages)
- Volume 5: physics opportunities with the FCC-hh injectors (14 pages)

- Being published as CERN yellow report

M. Mangano et al.
FCC-hh physics perspectives

Collider Limits

- wino: disappearing tracks
- higgsino
- mixed (\tilde{B}/\tilde{H})
- mixed (\tilde{B}/\tilde{W})
- gluino coan.
- stop coan.
- squark coan.

$m_{\tilde{\chi}}$ [TeV]

100 TeV
14 TeV

G. Giudice
FCC-ee physics requirements

- physics programs / energies:
 - Z (45.5 GeV) Z pole, ‘TeraZ’ and high precision M_Z & Γ_Z
 - W (80 GeV) W pair production threshold, high precision M_W
 - H (120 GeV) ZH production (maximum rate of H’s)
 - t (175 GeV): $t\bar{t}$ threshold, H studies

- beam energy range from 35 GeV to ≈ 200 GeV
- highest possible luminosities at all working points
- possibly H (63 GeV) direct s-channel production with monochromatization
 (c.m. energy spread <6 MeV, presentation at IPAC’16)
- beam polarization up to ≥ 80 GeV for beam energy calibration
Lepton Collider Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FCC-ee (400 MHz)</th>
<th>CEPC</th>
<th>LEP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics working point</td>
<td>Z</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>energy/beam [GeV]</td>
<td>45.6</td>
<td>120</td>
<td>105</td>
</tr>
<tr>
<td>bunches/beam</td>
<td>30180</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>bunch spacing [ns]</td>
<td>7.5</td>
<td>50</td>
<td>22000</td>
</tr>
<tr>
<td>bunch population ([10^{11}])</td>
<td>1.0</td>
<td>3.8</td>
<td>4.2</td>
</tr>
<tr>
<td>beam current [mA]</td>
<td>1450</td>
<td>16.6</td>
<td>3</td>
</tr>
<tr>
<td>luminosity/IP (x 10^{34} \text{cm}^{-2}\text{s}^{-1})</td>
<td>210</td>
<td>2.0</td>
<td>0.0012</td>
</tr>
<tr>
<td>energy loss/turn [GeV]</td>
<td>0.03</td>
<td>3.1</td>
<td>3.34</td>
</tr>
<tr>
<td>synchrotron power [MW]</td>
<td>100</td>
<td>103</td>
<td>22</td>
</tr>
<tr>
<td>RF voltage [GV]</td>
<td>0.4</td>
<td>6.9</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Identical FCC-ee baseline optics for all energies

- FCC-ee: 2 separate rings
- CEPC, LEP: single beam pipe
combining successful ingredients of recent colliders → extremely high luminosity at high energies

LEP:
- high energy SR effects

B-factories:
- KEKB & PEP-II:
 - high beam currents
 - top-up injection

DAFNE: crab waist

Super B-factories
- S-KEKB: low β_y^*

KEKB: e^+ source

HERA, LEP, RHIC:
- spin gymnastics
FCC-ee luminosity per IP

further increase with squeeze to
\(\beta_y^* = 1 \text{ mm}, \beta_x^* = 0.5 \text{ m} \)

new baseline 2016,
crab waist w 2 IPs
\(\beta_y^* = 2 \text{ mm}, \beta_x^* = 1 \text{ m} \)

mono-

chromati-
zation?

\(\alpha_{\text{QED}} \)

Z

H?

WW

HZ

t\bar{t}

conservative baseline with functioning optics,
space for improvement, esp. at Z and W

c.m. energy [GeV]
beside the collider ring(s), a full-energy booster of the same size (same tunnel) must provide beams for top-up injection to sustain the extremely high luminosity

- same size of RF system, but low power (~ MW)
- top up frequency ≈0.1 Hz
- booster injection energy ≈5-20 GeV
- bypass around the experiments
• 2 main IPs in A, G for both machines
• asymmetric IR optic/geometry for ee to limit synchrotron radiation to detector

Lepton beams must cross over through the common RF to enter the IP from inside. Only a half of each ring is filled with bunches.

Max. separation of 3(4) rings is about 12 m: wider tunnel or two tunnels are necessary around the IPs, for ±1.2 km.

transverse emittances

in good company with modern light sources

LHC MD proposed!
final-focus optics design

optics design for all working points achieving baseline performance

interaction region: asymmetric optics design

- synchrotron radiation from upstream dipoles <100 keV up to 450 m from IP
- dynamic aperture & momentum acceptance requirements fulfilled at all WPs
SuperKEKB will pave the way towards $\beta^* \leq 2$ mm
SuperKEKB: ultra-low β^*

$I_{e+} = 3.6$ A, $I_{e-} = 2.6$ A

$P_{SR} \sim 13$ MW

$C = 3$ km

beam commissioning started this year

K. Oide et al.

SuperKEKB goes beyond FCC-ee, testing all concept

top up injection at high current

$\beta_y^* = 300$ μm (FCC-ee: 1 mm)

lifetime 5 min (FCC-ee: ≥ 20 min)

$\varepsilon_y / \varepsilon_x = 0.25\%$ (similar to FCC-ee)

off momentum acceptance ($\pm 1.5\%$, similar to FCC-ee)

e^+ production rate (2.5×10^{12}/s, FCC-ee: $< 1.5 \times 10^{12}$/s (Z cr.waist)
key technologies for FCC-ee

SC radiofrequency system
efficient RF power sources
vacuum chamber with photon stops and discrete shielding
low-power low-field arc magnets
final IR quadrupoles
SRF system requirements

very large range of operation parameters

<table>
<thead>
<tr>
<th>“Ampere-class” machines</th>
<th>“high gradient” machines</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{total} (GV)</td>
<td>$n_{bunches}$</td>
</tr>
<tr>
<td>hh</td>
<td>0.032</td>
</tr>
<tr>
<td>Z</td>
<td>0.4/0.2</td>
</tr>
<tr>
<td>W</td>
<td>0.8</td>
</tr>
<tr>
<td>H</td>
<td>5.5</td>
</tr>
<tr>
<td>t</td>
<td>10</td>
</tr>
</tbody>
</table>

Naive scale up from an hh system

- Voltage and beam current ranges span more than factor $> 10^2$
- No well-adapted single RF system solution satisfying requirements
SRF system R&D lines

400 MHz single-cell cavities preferred for hh and ee-Z (few MeV/m)
- Baseline Nb/Cu @4.5 K, development with synergies to HL-LHC, HE-LHC
- R&D: power coupling 1 MW/cell, HOM power handling (damper, cryomodule)

400 or 800 MHz multi-cell cavities preferred for ee-H, ee-tt and ee-W
- Baseline options 400 MHz Nb/Cu @4.5 K, 800 MHz bulk Nb system @2K
- R&D: High Q₀ cavities, coating, long-term: Nb₃Sn like components
future circular collider study

Frank Zimmermann

Conf12 Workshop, 4 September 2016

Dotted lines – only changing P drive
Solid lines – changing P drive and Voltage

η=90%!

A 40-beam prototype “BAC” klystron has been built and successfully tested at VDBT, Moscow, this year!

I. Syratchev

comparing simulated performances of MBIOT and HEKCW MBK

eta = 90%!
Efficient 2-in-1 arc magnets

dipole based on twin aperture yoke and single busbars as coils

Twin 2-in-1 quadrupole

The novel arrangements of the magnetic circuit allow for considerable savings in Ampere-turns and power consumption, less units to manufacture, transport, install, align, remove,…
MDI work started with optimization of:
- I^*, IR quadrupole design
- compensation & shielding solenoid
- SR masking and chamber layout

“envelope” for the shielding solenoid (yellow):
- z_start = 2.2 m (front face)

Compensating solenoid (green):
- z_start = 1.3 m, z_end = 2.2 m
- $B = 4.9 \, T$

CERN model of CCT IR quadrupole
- width = 20 cm i.e. z_start ~ 1.1 m
- Si/W calorimeter

BINP prototype IR quadr.
- 2 cm aperture, 100 T/m
Future Circular Collider Study
Frank Zimmermann
Conf12 Workshop, 4 September 2016

polarization & energy calibration

accurate energy calibration using resonant depolarization ⇒ measurement of $M_Z, \Gamma_Z, M_W - \delta M_Z, \delta \Gamma_Z \sim 0.1 \text{ MeV}, \delta M_W \sim 0.3 \text{ MeV}

physics with longitudinally polarized beams - transverse polarization must be rotated into the longitudinal plane using spin rotators (see e.g. HERA)

scaling from LEP observations:

polarization expected up to the WW threshold!

simulations for FCC-ee: high polarization with harmonic spin matching

polarimetry extrapolated from ELSA to FCC-ee: $\Delta P \sim 0.1\%$ turn by turn and bunch by bunch using conventional high-power laser

First Look at the Physics Case of TLEP

The TLEP Design Study Working Group
(See next pages for the list of authors)

OPEN ACCESS
lepton-hadron collider FCC-he

FCC-he collides e- from ERL with FCC-hh protons

(same concept as proposed for LHeC; same ERL?)

see LHeC presentation by D. Pellegrini
lepton-hadron (p) parameters

<table>
<thead>
<tr>
<th>Parameter [Unit]</th>
<th>LHeC CDR</th>
<th>ep at HL-LHC</th>
<th>ep at HE-LHC</th>
<th>FCC-he</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_p [TeV]</td>
<td>7</td>
<td>7</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>E_e [GeV]</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>\sqrt{s} [TeV]</td>
<td>1.3</td>
<td>1.3</td>
<td>1.9</td>
<td>3.5</td>
</tr>
<tr>
<td>Bunch spacing [ns]</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>p/bunch [10^{11}]</td>
<td>1.7</td>
<td>2.2</td>
<td>2.2</td>
<td>1</td>
</tr>
<tr>
<td>ε_p [μm]</td>
<td>3.7</td>
<td>2</td>
<td>2</td>
<td>2.2</td>
</tr>
<tr>
<td>ϵ/$bunch$ [10^9]</td>
<td>1</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>ϵ^- current [mA]</td>
<td>6.4</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>β_p^* [cm]</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Hourglass factor</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Pinch factor</td>
<td>1.3</td>
<td>1.3</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>Luminosity [10^{33} cm$^{-2}$s$^{-1}$]</td>
<td>1.3</td>
<td>10.1</td>
<td>15.1</td>
<td>9.2</td>
</tr>
</tbody>
</table>

O. Bruning, M. Klein, D. Schulte, F. Zimmermann
FCC-he site studies

FCC Long Straight Section H

Tunnel Geology
- Molasse rock (sandstone).

Construction
- Tunnel Boring Machine (TBM) in straight sections
- Roadheader in arcs

Civil Engineering challenges
- Low geological risk
- Interaction with main FCC tunnel(s)

C. Cook, M. Klein
FCC-he physics

similar to, and better than LHeC

LHeC CDR: About 200 experimentalists and theorists from 69 institutes working for 5 years based on series of yearly workshops since 2008

LHeC and FCC-eh
High-energy frontier e-p and e-A colliders to follow HERA with factor 1000 higher luminosity running simultaneously with HL-LHC / FCC-hh.

M. Klein, U. Klein

http://cern.ch/lhec
unravelling QCD at the FCC

(1) QCD coupling α_s (FCC-ee, FCC-he)

(2) parton densities (FCC-he)

(3) beyond DGLAP (FCC-he)

(4) many-body QCD (FCC-hh, HE-LHC)

numerous synergies between the various FCC colliders!

D. d’Enterria, QCD at Future Facilities, QCD@LHC, Zurich, August 2016
QCD coupling α_S

- determines strength of strong interaction between quarks & gluons.
- single free parameter in QCD in the $m_q \rightarrow 0$ limit
- determined at a ref. scale ($Q=m_Z$)

FCC-he: α_S from proton structure function $\rightarrow \delta\alpha_S < 0.3\%$

FCC-ee: α_S from e$^+$e$^-$ jet event shapes & rates $\rightarrow \delta\alpha_S < 1\%$

α_S from hadronic Z decays $\rightarrow \delta\alpha_S < 0.3\%$

α_S from hadronic W decays $\rightarrow \delta\alpha_S < 0.3\%$

~0.3% α_S precision from high-lumi e$^+$e$^-$ measurements
parton kinematics: \((x, Q^2)\)

FCC-he

\(pe\)

FCC-hh

\(pp\)

D. d’Enterria, M. Klein

Future Circular Collider Study
Frank Zimmermann
Conf12 Workshop, 4 September 2016
parton kinematics: \((x, Q^2) - 2\)

FCC-he (Ae)

FCC-hh (AA)

D. d’Enterria
FCC-pp: ~10% PDF uncertainty at H, Z scales

FCC-he lowers FCC-pp PDF uncertainty to <1% at H, Z scales and strongly reduces parton uncertainties between 10 GeV and 10 TeV, for all flavors

<1% PDF precision at FCC-hh from high-energy e-p collider (FCC-he)

few % nuclear PDF precision from high-energy e-A collider (FCC-he)
beyond DGLAP

non-linear evolution at low x, gluon splitting, gluon recombination multiparton interactions, ...

FCC-he (pe, Ae) will probe nonlinear QCD
many-body QCD

FCC-hh (AA) studying QGP at TeV/fm3
what will FCC do for QCD?

(1) permil α_s precision (FCC-ee, FCC-he)
(2) sub-% PDF precision (FCC-he)
(3) nonlinear QCD limit (FCC-he)
(4) TeV/fm3 QCD thermodynamics (FCC-hh, HE-LHC)

FCC = the perfect accelerator complex to reveal the QCD secrets

D. d’Enterria
FCC International Collaboration

- 87 institutes
- 28 countries + EC

Status: August, 2016
FCC Collaboration Status

87 collaboration members + EC + CERN as host

<table>
<thead>
<tr>
<th>Collaboration</th>
<th>Country</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBA/CELLS</td>
<td>Spain</td>
<td>Goethe U Frankfurt</td>
</tr>
<tr>
<td>Ankara U.</td>
<td>Turkey</td>
<td>GSI, Germany</td>
</tr>
<tr>
<td>Aydin U.</td>
<td>Turkey</td>
<td>GWNNU, Korea</td>
</tr>
<tr>
<td>U Belgrade</td>
<td>Serbia</td>
<td>U. Guanajuato, Mexico</td>
</tr>
<tr>
<td>U Bern</td>
<td>Switzerland</td>
<td>Hellenic Open U, Greece</td>
</tr>
<tr>
<td>BINF</td>
<td>Russia</td>
<td>HEPHY, Austria</td>
</tr>
<tr>
<td>CASE (SUNY/BNL)</td>
<td>USA</td>
<td>U Houston, USA</td>
</tr>
<tr>
<td>CBPF</td>
<td>Brazil</td>
<td>ISMAB-CSIC, Spain</td>
</tr>
<tr>
<td>CEA Grenoble</td>
<td>France</td>
<td>IFAE, Spain</td>
</tr>
<tr>
<td>CEA Saclay</td>
<td>France</td>
<td>IFAE, Spain</td>
</tr>
<tr>
<td>CIEMAT</td>
<td>Spain</td>
<td>IFIC-CSIC, Spain</td>
</tr>
<tr>
<td>CINVESTAV</td>
<td>Mexico</td>
<td>IIT Kanpur, India</td>
</tr>
<tr>
<td>CNRS</td>
<td>France</td>
<td>IFJ PAN Krakow, Poland</td>
</tr>
<tr>
<td>CNRS/Paris</td>
<td>France</td>
<td>INFN, Italy</td>
</tr>
<tr>
<td>CNRS-SPIN</td>
<td>Italy</td>
<td>INP Minsk, Belarus</td>
</tr>
<tr>
<td>Cockcroft</td>
<td>UK</td>
<td>U Iowa, USA</td>
</tr>
<tr>
<td>U Colima</td>
<td>Mexico</td>
<td>IPM, Iran</td>
</tr>
<tr>
<td>UCPH</td>
<td>Denmark</td>
<td>UC Irvine, USA</td>
</tr>
<tr>
<td>CSIC/IFIC</td>
<td>Spain</td>
<td>Isik U., Turkey</td>
</tr>
<tr>
<td>TU Darmstadt</td>
<td>Germany</td>
<td>Istanbul University, Turkey</td>
</tr>
<tr>
<td>TU Delft</td>
<td>Netherlands</td>
<td>JAI, UK</td>
</tr>
<tr>
<td>DESY</td>
<td>Germany</td>
<td>JINR Dubna, Russia</td>
</tr>
<tr>
<td>DOE</td>
<td>USA</td>
<td>Jefferson LAB, USA</td>
</tr>
<tr>
<td>TU Dresden</td>
<td>Germany</td>
<td>FZ Jülich, Germany</td>
</tr>
<tr>
<td>Duke U.</td>
<td>USA</td>
<td>KAIST, Korea</td>
</tr>
<tr>
<td>EPFL</td>
<td>Switzerland</td>
<td>KEK, Japan</td>
</tr>
<tr>
<td>UT Enschede</td>
<td>Netherlands</td>
<td>KIAS, Korea</td>
</tr>
<tr>
<td>ESS</td>
<td>Sweden</td>
<td>King’s College London, UK</td>
</tr>
<tr>
<td>U Geneva</td>
<td>Switzerland</td>
<td>KIT Karlsruhe, Germany</td>
</tr>
<tr>
<td>Giresun U.</td>
<td>Turkey</td>
<td>KU, Seoul, Korea</td>
</tr>
<tr>
<td>Korea U Sejong</td>
<td>Korea</td>
<td></td>
</tr>
<tr>
<td>U Liverpool</td>
<td>UK</td>
<td></td>
</tr>
<tr>
<td>U Lund</td>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>U Malta</td>
<td>Malta</td>
<td></td>
</tr>
<tr>
<td>MAX IV</td>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>MEPHi</td>
<td>Russia</td>
<td></td>
</tr>
<tr>
<td>UNIMI</td>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>MIT</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Northern Illinois U</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>NC PHEP Minsk</td>
<td>Belarus</td>
<td></td>
</tr>
<tr>
<td>OIU</td>
<td>Turkey</td>
<td></td>
</tr>
<tr>
<td>Okan U.</td>
<td>Turkey</td>
<td></td>
</tr>
<tr>
<td>U Oxford</td>
<td>UK</td>
<td></td>
</tr>
<tr>
<td>PSI</td>
<td>Switzerland</td>
<td></td>
</tr>
<tr>
<td>U. Rostock</td>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>RTU</td>
<td>Latvia</td>
<td></td>
</tr>
<tr>
<td>UC Santa</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Sapienza/Roma</td>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>U Siegen</td>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>U Silesia</td>
<td>Poland</td>
<td></td>
</tr>
<tr>
<td>Stanford U</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>TAU</td>
<td>Israel</td>
<td></td>
</tr>
<tr>
<td>TU Tampere</td>
<td>Finland</td>
<td></td>
</tr>
<tr>
<td>TOBB</td>
<td>Turkey</td>
<td></td>
</tr>
<tr>
<td>U Twente</td>
<td>Netherlands</td>
<td></td>
</tr>
<tr>
<td>TU Vienna</td>
<td>Austria</td>
<td></td>
</tr>
<tr>
<td>Wigner RCP</td>
<td>Budapest, Hungary</td>
<td></td>
</tr>
<tr>
<td>Wroclaw UT</td>
<td>Poland</td>
<td></td>
</tr>
</tbody>
</table>

status 29 August 2016
EC contributes with funding to FCC-hh study

- **EuroCirCol H2020 Design Study**, launched in June 2015, is in full swing now and makes essential contributions to the FCC-hh work packages:
 - arc & IR optics, 16 T dipole design, cryogenic beam vacuum system

Resources provided by research institutes and universities with H2020 grant support.

Resources provided and work carried out by worldwide collaboration.
Summary

- FCCs’ ee/pp/AA/pe/Ap/Ae collisions will explore uncharted regions in energy, luminosity, polarization, x and Q^2
 - novel challenges and new opportunities
 - innovative technological approaches
- FCC Study aims at cost-effective design with maximum performance
- rapidly growing global FCC collaboration (now nearly 100 institutes), more contributors welcome - especially from Greece!
- Next milestone: FCC Week 2017