Semitauonic B decays, a window on new Physics

GUY WORMSER
LAL
CNRS/IN2P3, PARIS SACLAY UNIVERSITY

Moriond ElectroWeak March 22, 2017
Why semitauonic decays are interesting?

- As tree level decays, they combine the advantages:
 - Very precise prediction from SM: \(R(D^*) \) known to 2% precision, using
 \[
 R(D^*) = \frac{\text{BR}(B^0 \rightarrow D^*\tau\nu)}{\text{BR}(B^0 \rightarrow D^*\mu\nu)}
 \]
 - Abundant channel \(\text{BR}(B^0 \rightarrow D^*\tau\nu) = 1.24\% \), one of the largest individual BR
 - Sensitivity to new physics: (simplest realization) A charged Higgs will automatically couple more to the \(\tau \). LFU violation can also occur through other mechanisms (leptoquarks,..)

- They offer several hadronisation implementations:
 - \(D^*, D^0, D^+, D_s, \Lambda_c, J/\psi \)
 - Differing not only by various properties of the spectator particle but also its spin: 0 (\(D^0, D^+, D_s \)), 1 (\(D^* \) and \(J/\psi \)) and \(\frac{1}{2} \) (\(\Lambda_c \)))
R(D*) with $\tau \rightarrow \mu \nu \nu$

Using the known B flight direction, approximate the B momentum using $\gamma \beta_{z,\text{vis}} = \gamma \beta_{z,B}$:

- Estimate gives $\sim 18\%$ resolution on B momentum, but preserves shapes of already-broad distributions of m_{miss}^2, E_μ^* and q^2
- 3d MC-template based binned fit to m_{miss}^2 vs E_μ^* in coarse q^2 bins
Fit Result

- Shown above: signal fit to “signal” data passing isolation selection
- Result $\frac{N_T}{N_\mu} = (4.32 \pm 0.37) \times 10^{-2}$, \(R(D^*) = 0.336 \pm 0.027 \pm 0.030\)
- \(N(\bar{B}^0 \to D^{*+}\mu^-\bar{\nu}_\mu) = 363,000 \pm 1600\)
If WA is correct, 22% of the D*τν events are mediated by new physics!

New ! $R(D^*)$ using τ hadronic decays in 3π

Unusual features of this analysis

- A semileptonic decay without (charged) lepton !!:
 - Amusing but more importantly ZERO background from normal semileptonic decays!!!!

- The background leads to nice mass peaks and not the signal !!!
 - Amusing but more importantly provides key handles to control the various backgrounds

- Only 1 neutrino emitted at the τ vertex
 - The complete event kinematics can be reconstructed with reasonable precision

- But very large potential background from « bread and butter » $D^*3\pi X$ decays; 100 times larger than the signal : A trick must be found!!
The normal topology of a $D^{*3}\pi X$ event

THIS topology for $D^{*}\tau\nu$ events

The 4σ requirement kills the $D^{*3}\pi X$ background by $\sim10^3$: the road to the treasure is open 😊!!!
The second gate: the double charm background

The second gate consists of B^0 decays where the 3π vertex is transported away from the B^0 vertex by a charm carrier: D_s, D^+ or D^0 (in that order of importance)

- This gate is thinner:
 - Double Charm $\rightarrow 3\pi X \sim 10 \times$ signal

LHCb has three very good weapons to blow this gate away:
- 3π dynamics
- Neutral isolation
- Background partial reconstruction
Importance of the normalization channel \(B^0 \rightarrow D^* 3\pi \)

- Normalization as similar as possible to the signal to cancel production yield, BR uncertainties and systematics linked to trigger, PID, first selection cuts

- Absolute BR recently measured by BABAR with a precision of 4.3%

 \(\text{(Phys.Rev. D94 (2016) no.9, 091101)} \)
The importance of the « D_s-o-meter »

- The D_s meson is the highest background since the W decays dominantly in D_s and the D_s is a very rich source of 3π +X final states.
- At low mass, only η and η' (red,green) contributions are peaking
 \[η \rightarrow π^+π^-π^0 \text{ and } η' \rightarrow η π^+π^- \quad \Rightarrow \quad M_{π^+π^-} < 415 \text{ MeV} \]
- At the ρ mass where the signal lives (τ→a_1,a_1→ρπ), only η’ contributes (η’→ ργ)
- Using the low BDT region, one constraints the D_s decay model to be used at high BDT
The anti-D_s BDT

- A BDT is constructed to get rid of the D_s background. It contains the following variables:
 - 3π dynamics: $\min(m_{\pi\pi})$, $\max(m_{\pi\pi})$,
 - B dynamics: $D^*3\pi$ mass
 - Partial reconstruction: the 4 constraints from the 2 lines of flight allows to reconstruct fully the event in the background hypothesis (no neutrinos)
 - Neutral isolation: energy in a cone around the 3π direction
 - Very D_s enriched at low BDT, good purity for signal at high BDT

- Opens the gate for search for BSM inside the events in addition to yields measurements
The control channels D_s, D^0, and D^+

$\pi\pi\pi$ mass in detached topology

D_s

Run 1, 3 fb$^{-1}$

D^0 to $K\,3\pi$ peak : Antisolation cut

D^+ peak : Anti-PID cut

Moriond ElectroWeak March 22, 2017
The $D_s \to 3\pi$ control channel is used to measure the ratio of $D^*D_s/D^*D^*_s/D^*D_s^{**}$ and to correct for their q^2 distribution.

A full fit is then performed at high BDT, as a 3D template binned fit of BDT,q^2 and τ lifetime.

$D^*3\pi$, D^0 background constrained by their signal in the control channels.

[Graph showing data from BaBar, Belle, LHCb, and an average, with a note that the results are from Run-1 and include only the central value and statistical errors.]
Systematic uncertainties

- **External**
 - 4.3% from $\text{BR}(B^o \rightarrow D^*3\pi)$ PDG 2016
 - 2% from $\text{BR}(B^o \rightarrow D^*\mu\nu)$

- **Internal**
 - MC statistics
 - D_s, D^+, D^o backgrounds
 - Prompt B^o backgrounds
 - Stripping, Trigger
 - FF and τ decay model

In red: can be reduced with help from other experiments (BELLE, BES,..)
- Expected overall to be larger than statistical error for the first publication (soon to come)
- Room for progress exists on a longer timescale on both internal and external sources!
Conclusion and Perspectives

- Semitauonic B decays are a great tool to discover new physics: high SM precision, high rate and high sensitivity.
- The exceptional LHCb capability to separate secondary and tertiary vertices open up the best road to study the semitauonic decays of all B particles, thanks to a new method based on 3 prongs τ decays.
- The statistical precision on Run1 should be around 6.5%, the best achieved so far for a single measurement.
- The very successful RunII data taking in 2015-2016 leads to a quadrupling of the data set.
- High statistics and high purity samples to search for BSM effects in the event observables.