J/ψ Production in Jets

Philip Ilten
on behalf of the LHCb Collaboration

Massachusetts Institute of Technology

April 5, 2017

25th International Workshop on Deep Inelastic Scattering
Overview

• 21 published quarkonia results!

Measurement of forward J/ψ production cross-sections in pp collisions at $\sqrt{s} = 13$ TeV

Forward production of Υ mesons in pp collisions at $\sqrt{s} = 7$ TeV and 8 TeV

Production of associated Υ and open charm hadrons in pp collisions at $\sqrt{s} = 7$ and 8 TeV via double parton scattering

Study of $\psi(2S)$ production and cold nuclear matter effects in pPb collisions at $\sqrt{s}_{NN} = 5$ TeV

Measurement of the J/ψ pair production cross-section in pp collisions at $\sqrt{s} = 13$ TeV

• detector and datasets

• J/ψ production in jets
• fully instrumented between $2 < \eta < 5$
• momentum resolution between 0.5% at 5 GeV to 1% at 200 GeV
• secondary vertex precision of $0.01 - 0.05(0.1 - 0.3)$ mm in $xy(z)$
Data Acquisition

- real-time calibration and full event reconstruction in Run 2
- full detector readout in Run 3
Inclusive Dimuon Trigger

Candidates

\begin{align*}
\text{LHCb preliminary} & \\
\eta \rightarrow \mu \mu (\gamma) & \\
\eta & \\
\omega / \rho & \\
\phi & \\
\psi (2S) & \\
\psi (1S) & \\
\Upsilon (2S) & \\
\Upsilon (3S) & \\
Z & \\
V & \\
\chi^2 & \\
T_p & \\
\text{–} & \\
\mu^+ \mu^- & \\
\mu^\pm \mu^\pm & \\
\end{align*}

\begin{align*}
\text{Prompt Trigger Output} & \\
p_T (\mu) > 1 \text{ GeV}, \chi^2_{IP} (\mu) < 6, \chi^2_V (\mu \mu) < 9 & \\
\mu \text{-ID neural network} > 0.95 & \\
\end{align*}
J/ψ Production in Jets
NRQCD

- non-relativistic QCD (NRQCD) factorizes quarkonia production

\[
\frac{d\sigma(pp \to H + X)}{d^3p} = \sum_{s,L,J} \frac{d\sigma(pp \to Q\bar{Q}[^{2s+1}L_J] + X)}{d^3p} \langle \mathcal{O}^H [^{2s+1}L_J] \rangle
\]

- physical state expanded into Fock states

\[
\begin{align*}
 gg &\to c\bar{c}[^3S_1^{(1)} g] \\
 gg &\to c\bar{c}[^3S_1^{(8)} g] \\
 gg &\to c\bar{c}[^1S_0^{(8)}, ^3P_J^{(8)}] g
\end{align*}
\]
1. NRQCD hard process, octet states showered with QCD splittings
2. Shower with NRQCD splittings, match with hard process

- J/ψ trigger writes out full events
- Select jets with J/ψs
- Measure $z \equiv p_T(J/\psi)/p_T(\text{jet})$
Signal Determination

- determine J/ψ signal yield with mass fits
- separate prompt (direct) from displaced ($b \rightarrow J/\psi$) yields with pseudo-lifetime fits

\[\tilde{\tau} \equiv (x_z - x_z(PV))m/p_z \]
Unfolding

- correct for z resolution and $p_T(j)$ resolution, $\approx 20 - 25\%$
- perform 2D unfolding in z and $p_T(j)$ (iterative Bayesian)
Displaced Results

LHCb, arXiv:1701.05116

Data (syst) vs. Pythia 8 for $b \rightarrow J/\psi$

LHCb

$\sqrt{s} = 13$ TeV

J/ψ Production in Jets

$z(J/\psi)$
Displaced Results

LHCb, arXiv:1701.05116

The plot shows the differential cross section $d\sigma/\sigma$ as a function of $z(J/\psi)$ from LHCb simulation. The simulation was performed at $\sqrt{s} = 13$ TeV with $b \to J/\psi$. The plot compares different configurations:

- **Pythia 8**
- **no g-split**
- **no MPI**

The $z(J/\psi)$ range is from 0 to 1.
Prompt Results

LHCb, arXiv:1701.05116

J/ψ Production in Jets

$\psi/J(z)$

- Data (syst)
- DPS
- LO NRQCD
- SPS

$\sigma_{eff} = 31 \text{ mb (PYTHIA default)}$

$\sqrt{s} = 13$ TeV

LHCb Prompt
Prompt Results

LHCb, arXiv:1701.05116

\[
\frac{d\sigma}{\sigma} (z) = \begin{cases}
\text{LO } 3S_1^{(1)} + \text{MPI} & \text{LO } 3S_1^{(8)} + \text{MPI} \\
\text{LO } 3S_1^{(1)} & \text{LO } 3S_1^{(8)} \\
\text{NLO}^* \text{ } 3S_1^{(1)} & \text{NLO}^* \text{ } 3S_1^{(8)}
\end{cases}
\]

LHCb simulation
\[\sqrt{s} = 13 \text{ TeV} \]

Prompt

\[
\frac{d\sigma}{\sigma} (z(J/\psi))
\]

\[
z(J/\psi)
\]
Outlook
LHCb: $p_T > 20$ GeV, $z_{\text{tag}} > 0.1$, $\eta \in [3, 4]$
Conclusions

- exciting new quarkonia physics underway
- measurements need to be expanded
 - $\psi(2S)$, Υ,
 - absolute distributions
 - polarization
 - ...
- new methods to test quarkonia splittings

Thank you!
Backup
Datasets

V. Vagnoni (2015) HL-LHC

- projected luminosity per run

<table>
<thead>
<tr>
<th>LHC era</th>
<th>HL-LHC era</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1(a) 2011</td>
<td>Run 4 2027 - 2029</td>
</tr>
<tr>
<td>Run 1(b) 2012</td>
<td>Run 5 2031 - ?</td>
</tr>
<tr>
<td>Run 2 2015 - 2019</td>
<td></td>
</tr>
<tr>
<td>Run 3 2021 - 2023</td>
<td></td>
</tr>
<tr>
<td>1 fb$^{-1}$</td>
<td>23 fb$^{-1}$</td>
</tr>
<tr>
<td>2 fb$^{-1}$</td>
<td>300 fb$^{-1}$</td>
</tr>
<tr>
<td>5 fb$^{-1}$</td>
<td>?</td>
</tr>
<tr>
<td>15 fb$^{-1}$</td>
<td></td>
</tr>
</tbody>
</table>

- pPb and PbPb heavy ion and fixed target pHe datasets

- LHCb upgrade during LS 2
 - LHCb-PUB-2014-040
 - replacement of readouts and photo-detectors for the RICHs
 - replacement of tracking detectors
 - full software trigger, see LHCb-TDR-016
 - currently limited by hardware readout at 1 MHz
 - upgrade will read out entire detector at 40 MHz
Comparison

LHCb, arXiv:1701.05116

ψ / J

z

0.2 0.4 0.6 0.8 1

σ / σ d 0

0.1 0.2

Prompt (syst)

b→J/ψ (syst)

LHCb

√s = 13 TeV

Ilten

J/ψ in Jets

April 5, 2017 3 / 4
Uncorrected Signal Yields

LHCb, arXiv:1701.05116

\[\psi / J(z_{0} \text{ } 0.2 \text{ } 0.4 \text{ } 0.6 \text{ } 0.8 \text{ } 1) \text{ Yield} / 0.1 \]

Reconstructed

LHCb = 13 TeV

\[\sqrt{s} < 20 \text{ GeV} \]

\[p_{T} \text{ (jet)} < 30 \text{ GeV} \]

Prompt

\[b \rightarrow J/\psi \]