Searches for Dark Matter with the ATLAS detector

Cora Fischer, on behalf of the ATLAS collaboration

Institut de Física d’Altes Energies
Barcelona

April 4, 2017

Deep Inelastic Scattering 2017, Birmingham
Motivation

Why search for 'dark matter'?
- strong evidence from several observations: rotational velocities in spiral galaxies, galaxy clusters, bullet cluster...
- cosmic microwave background: \(\sim 26\% \) of universe made up by dark matter

What is dark matter?
- at least gravitational interaction, at most weak interaction with SM sector
- stable on cosmological time scale

⇒ focus on WIMP model for dark matter: weakly interacting, massive (non relativistic), stable

→ production at colliders possible
Dark Matter Searches at the LHC

How to look for dark matter?

WIMPs can only be recognised as E_T at the LHC: need a recoiling object: jets, W/Z, γ, Higgs boson

- event signatures denoted as **Mono-X**:
 - jet $+ E_T$
 - γ $+ E_T$
 - W/Z $+ E_T$
 \leftrightarrow different decay modes

- Higgs $+ E_T$

\leftrightarrow different decay modes

\leftrightarrow Higgs directly involved in WIMP production

- dark matter+heavy flavour production:

- di-jet resonant production:
 mediator can also decay to quarks
Strategy: search for an abundance of events with high E_T, a high p_T jet and 0 leptons

- at most four jets ($p_T > 30$ GeV)
- $E_T > 250$ GeV
- leading jet $p_T > 250$ GeV

- control regions defined to estimate $W/Z+$jets background: lepton veto inverted, E_T defined to mimic $p_T(W/Z$-boson)

- simultaneous fit to E_T: $\rightarrow E_T$-dependent scale factors for background normalisation

- dominant background: $Z(\nu\nu)+$jets: normalised via $W(\mu\nu)+$jets scale factor, theory transfer uncertainty applied in signal region
No excess found: limit on dark matter production via Z'-like mediator:

\leftrightarrow axial-vector coupling with $g_\chi = 1.0$ and $g_q = 0.25$

\leftrightarrow derivation of scattering cross section limit: ATLAS constraint competitive for low DM masses
Monophoton Search \((36.1 \text{ fb}^{-1})\)

Brand NEW Link

Similar to monojet: instead of high energetic jet, require high energetic photon

- 1 isolated photon with \(p_T > 150\) GeV, no leptons
- \(E_T > 150\) GeV, at most one jet with \(p_T > 30\) GeV
- combination of data-driven methods and MC
- fit to \(E_T\): \(W/Z\gamma\) backgrounds scale factors
- Dominant background \(Z(\nu\nu)\gamma\) normalised by \(Z(\ell\ell)\gamma\) scale factors
Monophoton Search (36.1 fb$^{-1}$)

Use binned fit to E_T-distribution to interpret results in terms of DM models:

Axial-vector mediator

Effective Theory: $\gamma\gamma\chi\chi$ interaction

Atlas Preliminary
$\sqrt{s}=13$ TeV, 36.1 fb$^{-1}$

Axial-vector mediator
Dirac DM
$g_q=0.25$, $g_\chi=1$, $g=0$

Preliminary
ATLAS
=13 TeV, 36.1 fb$^{-1}$

EFT model
$\gamma\gamma\chi\chi$

→ analysis sensitivity dominated by statistical uncertainty in control regions
Mono-\(V(\rightarrow\text{hadrons})\) Search (3.2 fb\(^{-1}\))

Search for \(W/Z+\not{E}_T\) with hadronically decaying \(W/Z\)

\(\rightarrow\) analysis similar to monojet search but with focus on \textbf{large-}R \textbf{jets}

- require \textbf{large-}R \textbf{jets}: both decay products of \(W/Z\) contained \((R = 1.0, \text{anti-}\kappa_t)\)
 \(\rightarrow\) substructure described by jet mass and \(D_2\) (two distinct energy concentrations)

- \(p_T(\text{large-}R \text{ jet}) > 200 \text{ GeV, } |\eta| < 2.0, \not{E}_T > 250 \text{ GeV}\)

- no leptons allowed

- dominant background \(Z(\nu\nu)+\text{jets}\)
 \(\rightarrow\) normalised via \(Z(\mu\mu)+\text{jets}\) estimation
Background-prediction in agreement with data: limits are set on effective field theory and simplified models:

\[\int L = 3.2 \text{ fb}^{-1} \quad \sqrt{s} = 13 \text{ TeV} \]

\[VV\chi\chi \text{ EFT} \]

\[\text{Observed} \quad \text{Expected} \]

\[\begin{array}{c}
\text{± 1σ} \\
\text{± 2σ}
\end{array} \]

\[\text{ATLAS} \]

\[\text{95\% C.L. lower limit on } M \]

\[\begin{array}{c}
200 \\
400 \\
600 \\
800 \\
1000
\end{array} \quad \begin{array}{c}
\text{GeV}
\end{array} \]

\[\text{Observed} \quad \text{Expected} \]

\[\sigma \quad 1\pm\sigma \\
2\pm\text{ATLAS} \]

\[\text{L=3.2 fb}^{-1} \quad \int = 13 \text{ TeV} \]

\[E_{T}^{\text{miss}} + W/Z: \text{vector model} \]

\[g_{SM} = 0.25, \quad g_{DM} = 1 \]

\[\text{95\% C.L. upper limit on } \mu \]

\[\begin{array}{c}
10^{-2} \\
10^{-1} \\
10^0
\end{array} \quad \begin{array}{c}
10
\end{array} \]

\[\text{ATLAS} \]

\[\int L = 3.2 \text{ fb}^{-1} \quad \sqrt{s} = 13 \text{ TeV} \]

\[E_{T}^{\text{miss}} + W/Z: \text{vector model} \]

\[g_{SM} = 0.25, \quad g_{DM} = 1 \]

\[\text{95\% C.L. upper limit on } \mu \]

\[\begin{array}{c}
10^{-2} \\
10^{-1} \\
10^0
\end{array} \quad \begin{array}{c}
10
\end{array} \]

\[\text{main limitations: statistics, modelling of large-}R\text{ jet observables} \]
Signature: opposite sign leptons and E_T

- require $E_T > 90$ GeV, boosted Z-boson with $\Delta R(\ell\ell) < 1.8$, b-veto
- dominant background: $ZZ \rightarrow \ell\ell\nu\nu$ production
- differential m_{ZZ} cross section corrected to NNLO QCD and NLO EW calculation
- WZ background normalized to NNLO QCD and fitted in control regions with 3 leptons
- Z+jets background data driven, non resonant background from $e\mu$ control regions
- Z+jets uncertainty dominates
- limit on vector mediator in simplified model of WIMP production
Mono-Higgs, \(H \to \gamma \gamma \) (13.3 fb\(^{-1}\))

ATLAS-CONF-2016-087

Higgs involved in WIMP production:

- different models: coupling to heavy mediator \(Z' \), coupling to \(Z' \) and pseudo-scalar \(A^0 \) (2HDM)
 - two photons with \(p_T > 25 \) GeV, \(105 < m_{\gamma \gamma} < 160 \) GeV
 - categories in \(E_T / \sqrt{\sum E_T} \) and \(p_T^{\gamma \gamma} \)
 \(\rightarrow \) highest sensitivity to vector mediator \((Z'_B) \) for high \(E_T / \sqrt{\sum E_T} \)
 and \(p_T^{\gamma \gamma} \)
 - background in \(m_{\gamma \gamma} \) fitted with exponential function+double sided crystal ball (Higgs resonance)
 - signal (crystal ball) fitted to \(0 \rightarrow \) upper cross section limits as function of heavy mediator masses derived

Higgs ISR suppressed due to Yukawa coupling
Mono-Higgs, $H \rightarrow bb$ (36.1 fb$^{-1}$)

Brand NEW Link

Search similar to mono-$H(\rightarrow \gamma\gamma)$: final state now with b-jets

- **resolved** region: two distinct b-jets, $E_T < 500$ GeV
- **merged** region: $E_T > 500$ GeV: boosted Higgs \rightarrow large-R jet with substructure
- shape-fit to m_{jj} or m_J in different categories of E_T and $\# b$-jets, two dedicated control regions
- main backgrounds: $W/Z+\text{jets}$, $t\bar{t}$
- dominant uncertainty: b-tagging, luminosity, JES, jet mass
DM+Heavy Flavour Searches (13.3 fb$^{-1}$)

Searches for $b\bar{b} + E_T$ and $t\bar{t} + E_T$ production:
¬ sensitive to *(pseudo-*)scalar mediator

- **DM+bb**: ATLAS-CONF-2016-086
 ¬ exactly two b-jets, 3rd jet veto, no leptons
 ¬ dominant background $Z(\nu\nu) + b$ reduced by cut requiring separated b-jets, momentum imbalance
 ¬ 3 CR, $Z(\nu\nu) + b$ constrained from $Z(\ell\ell) + b$

- **DM+tt**: ATLAS-CONF-2016-077, ATLAS-CONF-2016-050, ATLAS-CONF-2016-076
 ¬ 0-leptons, 1-lepton or 2-leptons channels
 ¬ many signal regions defined with help of different variables: $E_T / \sqrt{H_T}, m_T$, razor variables...
 ¬ dominant background is SM $t\bar{t}$ production: estimated in control regions
Limits shown on **pseudo-scalar** mediator models (similar to scalar mediator):

bb + E_T

tt + E_T

similar sensitivities
Search for resonance in di-jet invariant mass spectrum

- see talk by Hanno Meyer zu Theenhausen (Wed. 2 pm)
- limits are set on excited quarks q^*, quantum black holes, W', Z', W^*, generic Gauss-shaped resonances
- in context of simplified models: limit on coupling g_q to standard model particles as a function of the mediator mass $m_{Z'}$
Combining dark matter searches in terms of simplified models with an axial-vector mediator model:

- **Dijet**: \(\sqrt{s} = 13 \text{ TeV}, \ 37.0 \text{ fb}^{-1} \), [arXiv:1703.09127 [hep-ex]]
- **Dijet 8 TeV**: \(\sqrt{s} = 8 \text{ TeV}, \ 20.3 \text{ fb}^{-1} \), Phys. Rev. D. 91 052007 (2015)
- **Dijet TLA**: \(\sqrt{s} = 13 \text{ TeV}, \ 3.4 \text{ fb}^{-1} \), ATLAS-CONF-2016-030
- **Dijet + ISR**: \(\sqrt{s} = 13 \text{ TeV}, \ 15.5 \text{ fb}^{-1} \), ATLAS-CONF-2016-070
- **E_T^{miss} + \gamma**: \(\sqrt{s} = 13 \text{ TeV}, \ 36.4 \text{ fb}^{-1} \), CERN-EP-2017-044
- **E_T^{miss} + jet**: \(\sqrt{s} = 13 \text{ TeV}, \ 3.2 \text{ fb}^{-1} \), JHEP 06 (2016) 059

Axial-vector mediator, Dirac DM
\[g_q = 0.25, \ g_l = 0, \ g_{DM} = 1 \]
All limits at 95% CL
Combination of Exclusions II

With less 'optimistic' coupling to standard model quarks: $g_q = 0.1$:

→ dilepton results shown, coupling suppressed: $g_\ell = 0.01$
Combination of Exclusions III

Limit on spin-dependent WIMP-proton scattering cross section:

\[
\begin{array}{cccc}
\text{DM Mass [GeV]} & 1 & 10 & 2 \\
\text{σ_{SD} (DM-proton) [cm}^2] & 10^{-42} & 10^{-41} & 10^{-40} \\
\end{array}
\]

ATLAS Simplified Model Exclusions

Preliminary March 2017

ATLAS

- Dijet TLA
 - \(\sqrt{s} = 13 \text{ TeV}, 3.4 \text{ fb}^{-1} \)
 - ATLAS-CONF-2016-030
- Dijet 8 TeV
 - \(\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1} \)
- Dijet
 - \(\sqrt{s} = 13 \text{ TeV}, 37.0 \text{ fb}^{-1} \)
 - arXiv:1702.07666v1 [hep-ex]
- PICO-60 C\textsubscript{3}F\textsubscript{8}
 - \(\sqrt{s} = 13 \text{ TeV}, 36.4 \text{ fb}^{-1} \)

Axial-vector mediator, Dirac DM

\(g_q = 0.25, g_l = 0, g_{DM} = 1 \)

ATLAS limits at 95% CL, direct detection limits at 90% CL
Summary and Outlook

- a variety of dark matter searches carried out throughout 2015 and 2016 data taking
 - many new results, many new results to come soon with full 2015+2016 data set

- interpretations focused on simplified models: dark matter production via heavy mediator
 - model dependent approach
 - complementary sensitivity compared to direct dark matter searches
 - constraints from di-jet resonance searches

- no evidence for dark matter found so far
 - stay tuned for new results with 3-10× increased data sets
BACKUP
Monophoton Search (36.1 fb\(^{-1}\))

Similar to monojet: instead of high energetic jet, require high energetic photon

- 1 isolated photon with \(p_T > 150 \) GeV, no leptons
- \(\slashed{E}_T > 150 \) GeV, at most one jet with \(p_T > 30 \) GeV
- 4 control regions to estimate \(W/Z\gamma \) and \(\gamma + \)jets background: use low-\(\slashed{E}_T \) region
- fake photon estimation data-driven: ABCD method for jets faking \(\gamma \), \(Ze\gamma/Zee \) ratio measurement for \(e \) faking \(\gamma \)

Simultaneous fit in control regions and signal regions to \(\slashed{E}_T \): independent normalisation factors per \(\slashed{E}_T \)-bin for \(W/Z\gamma \) backgrounds

Dominant background \(Z(\nu\nu)\gamma \) normalised by \(Z(ll)\gamma \) scale factors
require large-R jets: both decay products of W/Z contained ($R = 1.0$, anti-k_t)
\rightarrow substructure described by jet mass and D_2 (two distinct energy concentrations)

P_T (large-R jet) > 200 GeV, $|\eta| < 2.0$, $E_T > 250$ GeV, $\Delta\phi(E_T, \text{narrow jet}) > 0.6$

no leptons

dominant background $Z(\nu\nu)+\text{jets}$
\rightarrow three control regions defined
\rightarrow simultaneous fit to E_T-distribution performed: single normalisation factors for $W/Z+\text{jets}$, $t\bar{t}$ backgrounds
\rightarrow $Z(\nu\nu)+\text{jets}$ normalised with $Z(\mu\mu)+\text{jets}$ scale factor
Search for resonance in di-jet invariant mass spectrum

- background completely data-driven: *sliding window fit* with \(f(x) = p_1(1 - x)^p_2 x^{p_3} \)
- limits are set on excited quarks \(q^* \), quantum black holes, \(W' \), \(Z' \), \(W^* \)
- limits are also set on generic Gauss-shaped resonances with mass \(m_G \) (truth level)
- in context of simplified models: limit on coupling \(g_q \) to standard model particles as a function of the mediator mass \(m_{Z'} \)

Observed 95% CL upper limit

<table>
<thead>
<tr>
<th>Mass (TeV)</th>
<th>Observed 95% CL upper limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.30</td>
</tr>
<tr>
<td>2.0</td>
<td>0.25</td>
</tr>
<tr>
<td>2.5</td>
<td>0.20</td>
</tr>
<tr>
<td>3.0</td>
<td>0.15</td>
</tr>
<tr>
<td>3.5</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Expected 95% CL upper limit

- \(\sigma / m_G = 0.15 \)
- \(\sigma / m_G = 0.10 \)
- \(\sigma / m_G = 0.07 \)
- \(\sigma / m_G = 0.03 \)
- \(\sigma / m_G = 0 \)