Development of a Superconducting Magnet for a Compact Cyclotron for Radioisotope Production

García-Tabarés, Luis (CIEMAT) et al

29 March 2016

The EuCARD-2 Enhanced European Coordination for Accelerator Research & Development project is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453.

This work is part of EuCARD-2 Work Package 9: HiRadMat@SPS and MagNet@CERN.

The electronic version of this EuCARD-2 Publication is available via the EuCARD-2 web site <http://eucard2.web.cern.ch/> or on the CERN Document Server at the following URL: <http://cds.cern.ch/search?p=CERN-ACC-NOTE-2017-0025>
Development of a Superconducting Magnet for a Compact Cyclotron for Radioisotope Production

Luis García-Tabarés, Pablo Abramian, Jesús Calero, José L. Gutiérrez, Javier Munilla, Diego Obradors, Jose M. Perez, Fernando Toral, Rafael Iturbe, Leire Mínguez, José Gómez, Elena Rodilla, Marta Bajko, Matthias Michels, Daniel Berkowitz, Friedrich Haug

Abstract—Present paper describes the development process of a low critical temperature (LTC) superconducting magnet to be installed in a compact cyclotron producing single-dose radioisotopes for clinical and preclinical applications. After a brief description of the accelerator, the magnet development process is described, starting from the magnetic, mechanical, quench and thermal calculations, continuing with the designing process, especially the support structure of the magnet, and the cryogenic supply system, to finish with the fabrication and first tests than have been performed.

Index Terms—Compact Cyclotrons, Cryogenics, Magnet, Radioisotope, Superconducting.

I. INTRODUCTION

POSITRON Emission Tomography (PET) has been demonstrated to be one of the most efficient molecular imaging techniques for clinical and preclinical needs. 90% of the PET clinical scans are currently performed with the isotope \(^{18}\text{F}\) due to the suitability of the fluodeoxyglucose (FDG) radiotracer for a vast number of applications. In the last years, other tracers have also been considered, including those based on \(^{11}\text{C}\), like Methionine, Choline or others [1].

The delivery of FDG in large central production centers has been demonstrated to be a cost-effective solution for populated areas, but the interest on other PET isotopes and tracers has raised expectations that cannot be satisfied by using the concept of large central production centers [2].

A new production method capable of providing single doses of the desired isotope would satisfy the requisites for non-standard PET demands. This method is based on the use of an accelerator providing the minimum required energy and current, with a reduced footprint [3].

From this background, the AMIT project (Advanced Molecular Imaging Technologies) was started in the year 2010, a multilateral collaboration of Spanish institutes and industries, led by SEDECAL and funded in the framework of a governmental program in which some foreign contributions, like CERN, were also included.

II. THE AMIT CYCLOTRON

One of the goals of the AMIT project is to develop a compact cyclotron for single dose production of \(^{18}\text{F}\) and \(^{11}\text{C}\). It is Lawrence type machine accelerating \(\text{H}^+\) up to an energy of 8.5 MeV and a current of 10 \(\mu\text{A}\) [4].

Since, for a given energy, the product of the cyclotron extraction radius times the magnetic field density is constant, the only way for reducing the sizes of the accelerator is by increasing its magnetic field using a superconducting magnet. In this case, it is a NbTi magnet which is cooled down with two-phase helium, circulating in a closed circuit and recondensed externally. Fig. 1 depicts the general arrangement of the AMIT system.

III. THE MAGNETIC CIRCUIT

The magnetic circuit of the AMIT Cyclotron includes two superconducting coils in a Helmholtz arrangement and the magnetic iron yoke, which configures the precise required vertical field in the accelerating chamber and acts as a return flux path, minimizing stray fields. It is a warm iron configuration, where only the coils are kept cold inside a common cryostat.
Initial magnetic design, aims at minimizing the overall magnet volume, while satisfying the corresponding field accuracy and shape requirements, which include a given radial field gradient to achieve beam focusing.

Magnetic design started by defining the field in the magnet center. Once the superconducting material was chosen, a simplified optimization process was developed to find a field value that minimized the overall weight of the magnet. It was found that the minimum value was located around 4T, which was finally the selected value.

Since the space required for the vacuum chamber breaks the iron axial symmetry, the first magnetic calculation were made based on a pseudo-3D model (2D QuickField® FEM code using azimuthally averaged permeabilities) which was then refined running actual 3D models in Opera® [5]

Fig. 2.a shows the radial field distribution, while Fig. 2.b shows the preliminary 3D Opera® model to compute it. The model is also used to check that the stray field specification is fulfilled.

![Fig. 2. a) Opera Magnetic Modeling b) Radial Magnetic Field Distribution](image)

Table I shows some basic parameters of the cyclotron superconducting magnet.

Also quench simulation for this final design has been carried out using custom-made software based in Matlab [6]. Fig. 3 shows the results for the temperature evolution of the hot spot and the maximum voltage appearing at the quenched coil.

**Fig. 3. Temperature (a) and voltage (b) after a coil quench.**

![Fig. 4. a) Schematic distribution of forces in the coil b) Vertical force calculation](image)

This annular structure also acts as a coil casing and must include an aperture to allow inserting the cyclotron vacuum chamber through it. It also includes a helical channel to allow the circulation of the two-phase helium. Fig. 4.a shows the forces acting on the coils and Fig. 4. b the calculated values for the vertical forces versus the coil current (positive values for repulsive forces and negative values for attractive forces). At high current values, repulsive forces between coil and iron get higher and so, the net magnetic force over each single coil switches its sign.

The coils and the casing are inserted in a cryostat, which includes a radiation screen to minimize thermal losses to liquid helium. To withstand the weight of the system (around 220 kg including the coils and casing) and also to adjust its position with respect to the iron, a high stiff concept support has been developed, based on the use of Cryogenic Grade Glass Fiber Reinforced Polymer (GFRP-CR) rods due to its low thermal conductivity.

The structure includes 8 rods, 4 in its upper part, which are really in charge of withstanding the system weight, and another 4 in the lower part to improve lateral stiffness, and also to compensate forces arising from the misalignment between the coil and the iron axes, which could be up to 0.5 mm in any direction.

Rods are also needed to achieve secure operation if vertical forces appear in the upward direction since these rods are designed only for traction operation avoiding bending or compression. For the mechanical design, a new complete model including magnetic forces and thermomechanical
stresses was developed using Ansys and Maxwell (Fig. 6).

The radiation screen and the current leads are refrigerated using gas helium. Both, liquid and gas helium are provided by a Cryogenic Supply System (CSS) that will be described in section IV. Helium is transferred from the CSS through a low-loss Transfer Line that is connected to the Cyclotron Connection Box, a built-in device that provides space, electrical insulation and thermal refrigeration for the current leads, instrumentation and all the safety valves for the whole fluid circuit. It also allows different refrigeration configurations like supplying LHe directly from a Dewar instead of from the CSS.

![Fig. 5. Coil, cryostat and support structure cross section](image)

Main contributions to the heat losses are radiation and conduction. Regarding radiation and in order to reduce the heat adsorbed by the casing, a refrigerated thermal shield is covering the whole casing and any other part at liquid helium temperature, including the casing, the connection box and connecting pipes. A reflective adhesive layer is added to the external surface of the casing to reduce emissivity while improving surface reflectiveness. The refrigeration of this thermal shield is done from the helium gas supplied by the CSS.

![Fig. 6. Structural model of mechanical behavior of the rods including weights, magnetic forces, temperatures and mechanical joints](image)

Conduction heat losses mainly come from the supporting rods of the casing as mentioned before. These rods have been split in two parts and the joint intercepted with the thermal shield to reduce, even more, heat losses to liquid helium.

High Temperature Superconductive current leads have been selected to reduce conduction losses as well as heat generation from the current supply. Some other heat losses coming from the safety parts (pipes, valves, etc…) have also been reduced, using a thermal interception procedure. A chart including the final heat losses at both stages for all contributions can be found in Table II.

<table>
<thead>
<tr>
<th>Contributions</th>
<th>Value (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclotron</td>
<td>0.53</td>
</tr>
<tr>
<td>Connection Box</td>
<td>0.16</td>
</tr>
<tr>
<td>Total at 4.5 K</td>
<td>0.70</td>
</tr>
<tr>
<td>Thermal Shield</td>
<td>10</td>
</tr>
<tr>
<td>Current Leads</td>
<td>10.5</td>
</tr>
<tr>
<td>Connection Box</td>
<td>4</td>
</tr>
<tr>
<td>Others</td>
<td>9.5</td>
</tr>
<tr>
<td>Total at First Stage</td>
<td>34</td>
</tr>
</tbody>
</table>

![Fig. 7. Magnet manufacturing. Thermal shield assembled around the casing (a) and quality measurements during cryostat assembly (b)](image)

**IV. MAGNET COOLING SYSTEM**

As explained in section III, both coils of the magnet are cooled at 4.5 K with evaporating liquid helium circulating through helical channels along the inner wall of the coil casing. Ideally the coolant enters the channels in liquid phase. However, also two-phase flow arriving from the refrigeration system can be accepted as long as the exit flow contains liquid to maintain isothermal conditions of the magnet. This condition along with the thermal loss inventory has been used to dimension the magnet cooling channel. [8]

The non-isothermal cooling of the thermal shield of the coils and the cryostat and also the magnet current leads is done with a helium gas flow at 30 to 60 K.

Both flows are supplied by the same device, the Cryogenic Supply System (CSS). As cold sources for both liquid and gas flows, a two-stage GM cryocooler is used with a rated cooling power of 1.5 W at 4.2 K [9].

Basically the CSS is a closed pumped helium circuit. The fluid is first cooled down from ambient temperature to around 30K and then directed to the thermal shielding circuits. The
flow is then returned to the CSS again and re-cooled to 4.5 K and condensed. The liquid exits the CSS and is sent to the cooling channels of the coils. Then this flow is returned to the CSS. The overall configuration of the CSS consists of a number of heat exchangers and “thermal anchorings” to the two stages of the cryocooler.

The CSS system is installed inside a vacuum vessel. A specially designed low-loss helium transfer line links the CSS with the magnet cryostat for remote cooling, entering in the connection box of the cyclotron. Fig. 8.a shows a picture of the CSS in which a rendering of one of the heat exchangers has been included for clarification. Fig. 8.b shows a conceptual drawing of the Transfer Line.

![Image of the Cryogenic Supply System and the low loss Transfer Line](image)

The CSS has been fully validated in stand-alone operation. For this the coils’ fluid channels and the coil’s thermal loads can be simulated with a purpose designed “validator system” which is installed in a test cryostat. Results are in good agreement with expectations; experimentally a maximum cooling power of 1.3 W at 4.5 K could be measured.

V. ONGOING EXPERIMENTAL RESULTS

In order to validate magnetic, mechanical and thermal concepts, a first test was performed (the Single Coil Test [10]) with a similar coil to the real ones but with half diameter, approximately. Refrigeration principle was the same and helium was provided from a pressurized Dewar. Helium flow mass could be controlled and measured and the radiation screen was cooled down using liquid nitrogen. Fig. 9 (left) shows the coil arrangement, including the shrinking aluminum cylinder and the casing. Basically two were the aims of the test: measuring the required flow to keep the magnet cold at 4.2 K and performing the training of the coil in spite of quite different magnetic conditions than the real ones. In both cases, comparison with predictions was crucial to validate the models for the actual cyclotron magnet. Regarding the training tests, the coil performed extremely well achieving short-sample critical current without any premature quench. With respect to the flow mass, it was in very good agreement with the predicted values from the calculated losses. Fig. 9 (right) is a plot showing the required minimum flow of helium to keep the magnet at 4.2K.

After finishing the real cyclotron coils, they were tested at CERN in a vertical cryostat by immersion in a liquid helium bath and trained and re-trained after warming them up. Main conclusions were that they went all beyond equivalent nominal current without training and that they didn’t show a significant re-training.

![Plot showing the required minimum flow of helium](image)

VI. CONCLUSIONS

There is a significant and increasing interest in compact small cyclotrons for single dose production of different radioisotopes. The only way for reducing the footprint of this kind of accelerators is increasing its magnetic field using superconducting magnets. We have presented in this work the design calculation of a superconducting magnet for a compact cyclotron, which includes magnetic computations, mechanical calculations, quench studies and thermal analysis to define the heat loss inventory. Design considerations are also presented, especially those concerning the coil supporting structure and the connection box as well as some comments on the system fabrication and integration.

Finally, some preliminary experimental results are shown, including those achieved in a test where a smaller coil working under the same principle was magnetically and mechanically tested, with very encouraging results, and also the first training results of the actual cyclotron coils.

REFERENCES