Measurement of WW/WZ production in semileptonic decay channels and search for anomalous gauge couplings with the ATLAS detector at 8 TeV

Margherita Spalla, on behalf of the ATLAS Collaboration
Aims of the analysis:
- Diboson cross section measurement.
- Constrain new physics through limits on anomalous Triple Gauge Couplings (aTGC)
- We use 20.2 fb⁻¹ collision data at 8 TeV

Two separate analysis channels for two hadronic W/Z topologies:
- **Resolved topology:**
 » Hadronic W/Z decay: two “standard” jets (W/Z → jj)
 » Provides the largest significance in cross section measurement
- **Boosted topology:**
 » Hadronic W/Z decay: one single large-R jet (W/Z → J)
 - W/Z produced with a large Lorentz boost
Identifying $WW/WZ \rightarrow l \nu q\bar{q}$

1. **Select leptonic W**

 - Exactly one ELECTRON or MUON:
 - with large $p_T > 30$ GeV
 - in central η region
 - isolated

 - Missing transverse energy:
 - $E_T^{\text{miss}} > 40$ GeV (resolved)

2. **Select hadronic W/Z**

 - Resolved channel: $R=0.4$ anti-K_t jets
 - Exactly two separate jets of $p_T > 25$ GeV
 - Further cuts on di-jet and lepton kinematics

Event display reference:
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplaysFromHiggsSearches
Identifying WW/WZ\rightarrowllνqq

1. **Select leptonic W**
 - Exactly one ELECTRON or MUON:
 - with large $p_T > 30$ GeV
 - in central η region
 - isolated

2. **Select hadronic W/Z**
 - **Boosted channel**: $R=1$ anti-K_t jet (*large-R jet*)
 - Exactly one large-R jet of high p_T: $p_T > 200$ GeV
 - No additional $R=0.4$ anti-K_t jets (to reduce top background)

Missing transverse energy:
- $E_T^{\text{miss}} > 50$ GeV (boosted)

NOTE: Boosted and Resolved phase spaces are **not** orthogonal

Event display reference:
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Physics

18/04/2017
Margherita Spalla
Contributions to final state

- **Signal:**
 - WW ~80%, WZ ~20%
 - Cannot separate the WW and WZ resonances

- **W/Z + jets (V+jets):**
 - Largest component
 » ~84% of total selected events

- **Top**
 - top/anti-top and single top
 - contributes to the visible peak

- **Minor backgrounds**
 - QCD multijet:
 » data-driven method based on modified event selection.
 - ZZ: ~ negligible
 » only considered for resolved

ATLAS Simulation Preliminary

\[m_{jj} \text{ [GeV]} \]

- Shape normalised to unity
- Fraction of events / 5 GeV

\[m_{JJ} \text{ [GeV]} \]

- Shape normalised to unity
- Fraction of events / 5 GeV

Figure 8:
(a) Comparison of the \(m_{jj} \) distributions for the WW and WZ processes, in the \(WV \rightarrow \nu j j \) channel.
(b) Comparison of the \(m_{JJ} \) distributions for the WW and WZ processes, in the \(WV \rightarrow \nu J \) channel.
Cross section measurement

Cross section is measured in the **fiducial phase space**.
- Kinematic acceptance of measurement.
- Defined from MonteCarlo particle-level objects.
 - Nonzero boosted/resolved overlap

Cross section extraction
- From Binned Maximum Likelihood fit
 - Resolved: di-jet invariant mass m_{jj}
 - Boosted: large-R jet mass m_J

Largest systematics
- MonteCarlo modelling: generator comparison
 - Resolved: Top, ~13%
 - Boosted: $W/Z+$jets, ~60%

Cross section

Cross section

Cross section

Cross section

Cross section

Cross section

Cross section
Cross section results

Resolved
Significance
Expected: 5.2 \(\sigma \)
Observed: 4.5 \(\sigma \)

Boosted
Significance
Expected: 2.3 \(\sigma \)
Observed: 1.3 \(\sigma \)

Resolved
Boosted

Cross section results

Resolved
Boosted

Resolved
Boosted

Resolved
Boosted

Resolved
Boosted

Resolved
Boosted

Resolved
Boosted

Resolved
Boosted
Cross section results

Resolved

Significance

Expected: 5.2 \(\sigma \)

Observed: 4.5 \(\sigma \)

\[\sigma_{\text{fid}}(WV \rightarrow \ell \nu jj, \text{observed}) = 209 \pm 28(\text{stat}) \pm 45(\text{sys}) \text{ fb} \]

\[\sigma_{\text{fid}}(WV \rightarrow \ell \nu jj, \text{theory}) = 225 \pm 13 \text{ fb} \]

Boosted

Significance

Expected: 2.3 \(\sigma \)

Observed: 1.3 \(\sigma \)

\[\sigma_{\text{fid}}(WV \rightarrow \ell \nu J, \text{observed}) = 30 \pm 11(\text{stat}) \pm 22(\text{sys}) \text{ fb} \]

\[\sigma_{\text{fid}}(WV \rightarrow \ell \nu J, \text{theory}) = 58 \pm 15 \text{ fb} \]
Search for anomalous Triple Gauge Couplings (aTGC)

- Contribution from new physics: vector boson couplings may deviate from Standard Model.
- Model independent interpretations
 - Here results in Effective Field Theory framework
 - Three free parameters
- aTGC tend to enhance the event rate at high p_T
- Strategy:
 - Cut on $65 \text{ GeV} < m_{jj}/m_J < 95 \text{ GeV}$
 - Maximum Likelihood fit of $p_T(jj)$ or $p_T(J)$
 - aTGC modelled with FullSim MonteCarlo
 - Resolved only: m_{jj} sideband control region

\[\Lambda = \text{new physics scale} \]
Search for anomalous Triple Gauge Couplings (aTGC)

- Contribution from new physics: vector boson couplings may deviate from Standard Model.
- Model independent interpretations
 - Here results in Effective Field Theory framework
 » Three free parameters
- aTGC tend to enhance the event rate at high p_T
- Strategy:
 - Cut on $65 \text{ GeV} < m_{jj}/m_J < 95 \text{ GeV}$
 - Maximum Likelihood fit of $p_T(jj)$ or $p_T(J)$
 » aTGC modelled with MonteCarlo
 » Resolved only: m_{jj} sideband control region
aTGC limits: 95% Confidence Interval

- Best sensitivity from boosted
- Boosted results similar to best previously published constraints
 - leptonic WW and WZ at 8 TeV (ATLAS/CMS)
 - CMS semileptonic WW/WZ at 8 TeV
Summary

- Analysis exploits both resolved and boosted topologies

- $4.5\,\sigma$ evidence of resolved WW/WZ
 - $1.3\,\sigma$ in boosted channel
- Measured fiducial cross sections in agreement with SM (NLO)

- Constraint on aTGC
 - Boosted signature provides limits similar to current best published limits

Ref. to shown plots: STDM-2015-23 (paper in preparation)
Backup
Data-driven corrections to MC: resolved channel

- Applied to W/Z+jets only
- Reweighting as a function of:
 - $\Delta \phi (jj)$
 - $p_T(j_1)$
- Order of 5-10%
- Derived in m_{jj} sideband control region:

 $m'_{jj} \not\in [65, 95]\text{GeV}$
Data-driven corrections to MC: boosted channel

- Applied to top and W/Z+jets
- Constant Scale Factors (SF)
 - Top correction: order of 10%
 - W/Z+jets correction: order of 15%
 - each derived in specific control region

- W/Z + jets control region:
 - m_J sidebands.
 - m_J ≠ [65, 95] GeV

- Top control region:
 - at least one b-tagged small-R jet,
 - not overlapping with the large-R jet (ΔR(j,J)>1.)
QCD multijet estimation

- Template shape estimated from QCD control region
 » About 2.5% of total background

- Template normalization from \(E_{\text{Tmiss}} \) fit
 - multijet \(E_{\text{Tmiss}} \) template: from QCD control region
 - \(E_{\text{Tmiss}} \) templates for other processes:
 » WW/WZ, W/Z+jets, top
 » from MC
 » summed in a single template in the fit
 - Resulting normalization is scaled by efficiency of dropped cuts

QCD control region
- Electron channel: invert electron quality criteria and isolation
- Muon channel: invert muon impact parameter and isolation

<table>
<thead>
<tr>
<th>(E_{\text{Tmiss}}) FIT REGION</th>
<th>Resolved</th>
<th>Boosted</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cuts but:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E_{\text{Tmiss}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \eta (j,j))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \phi (E_{\text{Tmiss}},j_1)) (μ ch. only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m_T (μ ch. only))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
In boosted analysis, QCD multijet is negligible in muon channel
Cross section extraction

Number of signal events
- From Binned Maximum Likelihood fit
- Fit variable:
 - Resolved: di-jet invariant mass m_{jj}
 - Boosted: large-R jet mass m_{j}

$$\sigma_{\text{fid}} = \frac{N^{WV}}{L \cdot D_{\text{fid}}}$$

- **L: integrated luminosity**
- **D_{fid}: corrects for** the difference between fiducial phase space and the actual selection on reconstructed objects.

$$D_{\text{fid}} \sim \frac{N^{WV}[\text{reco, selected}]}{N^{WV}[WV \rightarrow \ell\nuqq, \text{inFiducial}]}$$
Systematic uncertainties

• Detector-related uncertainties
 • Larger component:
 » Resolved: small-R jet energy scale / resolution
 » Boosted: large-R jet energy and mass scale / resolution

• Modelling uncertainties
 » Generator comparison / theoretical uncertainties on process cross section
 » Data-driven SF where applicable
 • Larger contribution
 » Resolved: Top / signal modelling
 » Boosted Top / W/Z+jets modelling
aTGC parameters in Effective Field Theory

- EFT assumed to be valid below an energy scale Λ
- Introduces three CP-conserving dimension-six operators
 - Their coupling constants are the aTGC parameters of interest

\[
O_W = (D_\mu \Phi)\dagger W^{\mu\nu} (D_\nu \Phi),
\]
\[
O_B = (D_\mu \Phi)\dagger B^{\mu\nu} (D_\nu \Phi),
\]
\[
O_{WWW} = Tr[W_{\mu\nu} W^{\nu\rho} W^{\mu}_\rho].
\]

$\Phi = $ Higgs doublet
$B^{\mu\nu}, W^{\mu\nu} =$ combinations of derivatives of gauge-boson fields

$\Lambda =$ new physics scale

References

Annals Phys. 335 (2013) 21

Alternative description: effective Lagrangian, not discussed in this talk
aTGC results from ATLAS leptonic WW at 8 TeV

Figure 16: The expected and observed 95% confidence-level contours for limits in the plane of two simultaneously non-zero parameters in the effective field theory framework. In each case, only the two effective field theory couplings under study are allowed to differ from zero.

Ref: JHEP 09 (2016) 029
aTGC results from this analysis (for comparison)

Figure 7: The 95% confidence-level regions for combinations of two EFT parameters. (a) c_{WWW}/Λ^2 and c_{B}/Λ^2, (b) c_{WWW}/Λ^2 and c_{W}/Λ^2, (c) c_{B}/Λ^2 and c_{W}/Λ^2. The expected and observed confidence regions are shown for the $WV\rightarrow l\nu$ channel and the $WV\rightarrow lJ$ channel. When computing the confidence regions for two parameters, the third EFT parameter is held fixed to zero.