Measurement of the CKM Angle γ

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2016 J. Phys.: Conf. Ser. 770 012028

(http://iopscience.iop.org/1742-6596/770/1/012028)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 188.184.3.56
This content was downloaded on 09/05/2017 at 16:24

Please note that terms and conditions apply.

You may also be interested in:

An Underlying Symmetry Determines all Elements of CKM and PMNS up to a Universal Constant
Ke Hong-Wei and Li Xue-Qian

Cabibbo–Kobayashi–Maskawa matrix: rephasing invariants and parameterizations
H Pérez R, P Kielanowski and S R Juárez W

CKM Fits: the standard model and the new physics
S Monteil

CKM angle measurements at LHCb
Alexis Vallier

Large non-factorizable contributions in $B \rightarrow a_0 a_0$ decays
Defa Dou, Xin Liu, Jing-Wu Li et al.

Flavor dependence of B_c meson form factors and $B_c \rightarrow PP$ decays
Rohit Dhir, Neelesh Sharma and R C Verma
Measurement of the CKM Angle γ

M. Whitehead\(^1\) on behalf of the LHCb collaboration
\(^1\) CERN, CH-1211 Geneva 23, Switzerland
E-mail: mwhitehe@cern.ch

Abstract. A summary of constraints on the CKM angle γ from recent LHCb analyses are discussed. The results of a combination of several LHCb measurements of γ are presented, giving

$$\gamma = (70.9^{+7.1}_{-8.5})^\circ,$$

where the single uncertainty is a combination of statistical and systematic sources. This represents the most precise measurement of the angle γ.

1. Introduction

Measurements of CP violation are important to understand the matter-antimatter asymmetry of the universe. In the quark sector, CP violation is included in the Standard Model (SM) of particle physics through a complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2]. The parameter γ is the least precisely measured angle of the CKM unitarity triangle, where the area of the triangle is proportional to the amount of CP violation in the SM [3]. Theoretically γ is very clean \((\Delta \gamma / \gamma \approx 10^{-7})\), because it can be measured through tree-level processes only [4]. Discrepancies between the value of γ from loop dominated processes and a precise direct measurement would infer the presence of New Physics effects.

Several methods are available to measure γ using decays such as $B^\pm \to D K^\pm$, where D is either a D^0 or \bar{D}^0 meson. The GLW method [5, 6] considers decays of the D meson to CP eigenstates, such as the CP even final states K^+K^- and $\pi^+\pi^-$. The ADS approach [7, 8] requires favoured and doubly Cabibbo suppressed (DCS) decays, for example $D \to K^{\pm}\pi^{\mp}$. A third method, known as GGSZ [9], uses D decays to self conjugate final states such as $K_S^0\pi^+\pi^-$. Three recent LHCb analyses are discussed; determining γ with $B^\pm \to D K^\pm$ with $D \to K^{\pm}\pi^{\mp}$, K^+K^-, $\pi^+\pi^-$, $\pi^+\pi^-\pi^+\pi^-$ and $K^{\pm}\pi^{\mp}\pi^+\pi^-$ decays [10] (Sec. 2), measuring CP violation using $B^0 \to D K^*(892)^0$ decays where $D \to K_0^0\pi^+\pi^-$ [11] (Sec. 3) and constraining γ using $B^0 \to D K\pi$ decays with $D \to K^+K^-$ and $D \to \pi^+\pi^-$ [12] (Sec. 4). The results of a combination of LHCb γ measurements is discussed in Sec. 5 [13].

2. Analysis of $B^\pm \to D K^\pm$ Decays

The GLW/ADS analysis of the decay $B^\pm \to D K^\pm$, using 2- and 4-body D decays is documented in Ref. [10]. Candidate $B^\pm \to D\pi^\pm$ decays are used as a high statistic control channel, although results are also given for these channels. Data samples are selected using multivariate analyses to remove background candidates.

Figure 1 shows the B candidate invariant mass distribution for the 2-body DCS D meson decays, where CP violation is clearly visible by eye in the $B^\pm \to D K^\pm$ channel, and has a
Figure 1. Invariant mass distribution of $B^{\pm} \to DK^{\pm}$ decays with the DCS decay $D \to \pi^{\pm}K^{\mp}$. Figure taken from Ref. [10], where the fit model is described.

Figure 2. Invariant mass distribution of $B^{\pm} \to DK^{\pm}$ decays with the DCS decay $D \to \pi^{\pm}K^{\mp}\pi^{\mp}\pi^{\mp}$. Figure taken from Ref. [10], where the fit model is described.

significance of about 8σ. Similarly, Fig. 2 shows similar distributions for the 4-body DCS decays of the D meson. In this case the CP violation effect is visible, but not significant, with the current statistics. In addition, CP violation is observed at the 5σ level using the $D \to K^{+}K^{-}$ and $D \to \pi^{+}\pi^{-}$ modes combined. The 4-body decay $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$ is also studied for the first time. There are 22 observables that are determined from the yields of the B^{+} and B^{-} decays for each D decay final state, which are used as an input to the γ combination described in Sec. 5.
A model dependent GGSZ analysis of

reject background candidates. A fit is performed to

but is not discussed in the following. Candidates are selected using a boosted decision tree to

detailed in Ref. [11]. Note that a model independent analysis has also been performed [14],

vertical lines show the signal mass window and components are as described in the legend.

Invariant mass distribution of

Figure 3.

Dalitz plot distribution for

the

in Fig. 3, to obtain the signal and background yields in the mass window

\[K \rightarrow \pi^+ \pi^-\]

Reference [12] describes the GLW-Dalitz analysis of the

4. Dalitz Plot Analysis of

B \rightarrow DK^{*}(892)^0

Decays h

A model dependent GGSZ analysis of \(B^0 \rightarrow DK^{*0}\) decays with \(D \rightarrow K_S^0 \pi^+ \pi^-\) by LHCb is

detailed in Ref. [11]. Note that a model independent analysis has also been performed [14],

but is not discussed in the following. Candidates are selected using a boosted decision tree to

reject background candidates. A fit is performed to the \(B\) candidate invariant mass, as shown

in Fig. 3, to obtain the signal and background yields in the mass window ±25MeV/c² around the

\(B^0\) mass.

For candidates in the signal mass window, an amplitude fit is performed to the \(D \rightarrow K_S^0 \pi^+ \pi^-\)

Dalitz plot distribution for \(B^0\) and \(B^0\) candidates. The amplitude model is taken from a BaBar

analysis, described in Ref. [15]. The observables

\[x_\pm \equiv r_B \cos(\delta_B \pm \gamma)\] and \(y_\pm \equiv r_B \sin(\delta_B \pm \gamma)\) are determined to be

\[
\begin{align*}
 x_- &= -0.15 \pm 0.14 \pm 0.03 \pm 0.01, \\
 y_- &= 0.25 \pm 0.15 \pm 0.06 \pm 0.01, \\
 x_+ &= 0.05 \pm 0.24 \pm 0.04 \pm 0.01, \\
 y_+ &= -0.65 \pm 0.24 \pm 0.08 \pm 0.01.
\end{align*}
\]

Here the first uncertainty is statistical, the second experimental systematic and the third

model dependent systematic. The hadronic parameters \(r_B\) and \(\delta_B\) are the ratio and strong

phase difference between the favoured and suppressed \(B\) decay amplitudes. All observables are

consistent with zero at roughly 2\(\sigma\), and are therefore consistent with \(CP\) conservation.

4. Dalitz Plot Analysis of

B \rightarrow DK^{+} \pi^-

Decays

Reference [12] describes the GLW-Dalitz analysis of the \(B^0 \rightarrow DK^+ \pi^-\) channel where \(D \rightarrow K^+ K^-\) and \(D \rightarrow \pi^+ \pi^-\). In addition, the favoured \(D \rightarrow K \pi\) decay is used as a high statistics

control channel. Signal candidates are separated from backgrounds using an artificial neural

network, and the data are binned in the output variable of the network. This approach preserves

the maximum signal yield without sacrificing purity in each bin. Projections of the fits to the

\(B\) candidate invariant mass distributions are shown in Fig. 5 for the three \(D\) decay modes.

Signal mass windows are defined to be 5246.6–5309.9MeV/c², 5246.9–5310.5MeV/c² and

5243.1–5312.3MeV/c² for \(D \rightarrow K^+ \pi^-\), \(K^+ K^-\) and \(\pi^+ \pi^-\) samples, respectively. For candidates

in the signal windows, a simultaneous Dalitz plot fit is performed to the three \(D\) decay samples,

following the method described in Refs. [16, 17]. Terms for \(CP\) violation are included in the
though the other contributions are non-negligible. The confidence intervals \(\gamma\) degrees. where the uncertainty includes both statistical and systematic effects. This is currently the most

\[m_+ = 0.04 \pm 0.16 \pm 0.11, \]
\[y_+ = -0.47 \pm 0.28 \pm 0.22, \]

where the first uncertainty is statistical and the second systematic. These results are consistent

with no \(CP\) violation.

5. Combination of LHCb \(\gamma\) Measurements
The combination of several LHCb measurements using a frequentist approach is described in
Ref. [13], which is an update of the previous combination [18], including the new results described
in Secs. 2–4. The combination takes input from \(B \rightarrow DK\)-like decay modes only, using a total of
71 observables from 10 LHCb analyses. The result of the one dimensional PLUGIN scan [19] for \(\gamma\)
is shown in Fig. 7 (left), the (right) plot shows the breakdown of the result in terms of the different
species of \(B\) mesons. It is clear that the \(B^{\pm}\) decay modes currently dominate the sensitivity,
though the other contributions are non-negligible. The confidence intervals \(\gamma \in [62.4, 78.0]^\circ\) at
68\% CL and \(\gamma \in [62.4, 78.0]^\circ\) at 95\% CL are set and \(\gamma\) is measured to be

\[\gamma = (70.9^{+7.1}_{-8.5})^\circ, \]

where the uncertainty includes both statistical and systematic effects. This is currently the most
precise measurement of \(\gamma\), improving on the previous LHCb combination by approximately two
degrees.
Figure 5. Invariant mass distribution of $B^0 \rightarrow DK^+\pi^-$ decays with (a) $D \rightarrow K^+\pi^-$, (b) $D \rightarrow K^+K^-$ and (c) $D \rightarrow \pi^+\pi^-$. The fit components are as described in the legend and the figure is from Ref. [12].

Figure 6. Projections of the Dalitz plot fit on $m(K\pi)$ for (a) \bar{B}^0 and (b) B^0 candidates. The fit components are as described in the legend. Figure taken from Ref. [12].
Figure 7. (Left) 1-CL curve for the angle γ obtained using the PLUGIN method, with the central value (solid vertical line), 1σ uncertainties (dashed vertical lines), and 68.3% and 95.5% CLs (horizontal dotted lines) shown. (Right) a breakdown to show the contributions of the different B meson species: B^+ (blue), B^0 (yellow), B^0_s (orange) and the full combination (green). Figure taken from Ref. [13].

6. Summary
The latest measurements of the CKM angle γ from LHCb are presented. The combination of results is consistent with the expected LHC Run 1 sensitivity. To improve the precision of the measurement, new decay modes can be added and updates can be included to existing measurements using Run 1 data. For example, information from $B \to D\pi$-like decays can be included. In the longer term the full Run 2 data sample will provide more than double the current available statistics, with an aim to reduce the uncertainties to around 4$^\circ$.

7. Acknowledgements
I would like to thank my LHCb colleagues for their help in preparing the talk and this document.

8. References
[12] Aaij R et al. (LHCb collaboration) 2016 submitted to JHEP (Preprint 1604.01525)
[13] Aaij R et al. (LHCb collaboration) 2016 JHEP 06 131 (Preprint 1604.01526)
[14] Aaij R et al. (LHCb collaboration) 2016 LHCb-CONF-2016-001
[18] Aaij R et al. (LHCb collaboration) 2014 LHCb-CONF-2014-004