Recent experimental results in flavour physics

Marco Gersabeck (The University of Manchester) on behalf of the LHCb collaboration including results from other flavour experiments

Portorož 2017, Portorož, 18 April 2017
Introduction

- $\sim 3.5\sigma$ $(g - 2)_\mu$ anomaly
- $\sim 3.5\sigma$ non-standard like-sign dimuon charge asymmetry
- $\sim 3.5\sigma$ enhanced $B \to D^{(*)}\tau\nu$ rates
- $\sim 3.5\sigma$ suppressed branching ratio of $B_s \to \phi\mu^+\mu^-$
- $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{ub}|$
- $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{cb}|$
- $2 - 3\sigma$ anomaly in $B \to K^*\mu^+\mu^-$ angular distributions
- $2 - 3\sigma$ SM prediction for ϵ'/ϵ below experimental result
- $\sim 2.5\sigma$ lepton flavor non-universality in $B \to K\mu^+\mu^-$ vs. $B \to K\ell^+\ell^-$
- $\sim 2.5\sigma$ non-zero $h \to \tau\mu$
Introduction

• A good number of often-cited tensions
 - Some will be statistical fluctuations
 - But if uncertainties can be trusted some should evolve into real anomalies
 - Worth having a closer look
 - Should investigate broadly even if some seem more attractive than others
• Huge potential for flavour measurements to reveal BSM physics
 - Will not cover all of these today
Spectroscopy

A brief visit to the world of many states
Tetraquarks and Pentaquarks

- Two pentaquark candidates discovered in 2015 decaying to $J/\psi p$
 - $P_c(4380), P_c(4450)$
 - Model-independent confirmation in 2016
- Four tetraquark candidates observed decaying to $J/\psi \phi$
 - First full amplitude analysis
 - Three new states plus one known suspect
 - $X(4140), X(4274), X(4500), X(4700)$
Towards further confirmation

- $P_c(4450)$ just above χ_{c1p} threshold
- First observation of $\Lambda_b \to \chi_{c1p}$ and χ_{c2p}
 - Can be used to test exotic nature of P_c
- Strangeness hidden charm pentaquark state predicted to decay into $J/\psi \Lambda$
 - Observed $\Xi_b^{-} \to J/\psi \Lambda K$ decays
- Phase-space analyses to follow

LHCb-PAPER-2017-011

arXiv: 1701.05274
\(\Omega_c \) gets excited

- 5 new narrow states observed in \(\Xi^+_c K \) spectrum
 - \(m = 3.3 \pm 0.12 \) GeV
 - \(\Gamma = 1 - 10 \) MeV
 - New excited \(\Omega_c \) states
- Expected feed-down seen and taken into account
- Sidebands and same-sign combinations show no structures

arXiv:1703.04639, accepted by PRL
CP violation

3 quark generations or more?
CP violation in mixing

- Look for $\bar{B} \rightarrow l^+$ decays
 - Forbidden directly, requires $\bar{B} \rightarrow B$ oscillation
- Measure asymmetry of $\bar{B} \rightarrow l^+$ and $B \rightarrow l^-$ rates
 - CP violation in mixing
- SM expectation far below current sensitivity
- Can measure this separately for B_d and B_s mesons
 - Separate access to $A_{sl}(B_d)$ & $A_{sl}(B_s)$
- Alternatively look for same-sign lepton pairs and compare l^+l^+ with l^-l^-
 - Measures combination of $A_{sl}(B_d)$ & $A_{sl}(B_s)$
Latest results

• D0 dimuon measurement differs from SM by about 3σ
 ➡ Difficult to motivate by non-SM physics
• Direct measurements of $a_{sli}(B_d)$ & $a_{sli}(B_s)$ show agreement with SM
• Possible differences in SM contribution to observables?
• LHCb has best single measurement of $a_{sli}(B_d)$ and $a_{sli}(B_s)$
 ➡ Latest: $a_{sli}(B_s) = (0.39 \pm 0.26 \pm 0.20)\%$
 PRL 117 (2016) 061803

• ATLAS now contributing constraints on potential direct CP violation contributions
 ➡ Using top decays
 ➡ No firm conclusion on D0 anomaly yet

JHEP 02 (2017) 071
News on β

- Combined BaBar and Belle analysis (1.1ab^{-1})
- Time-dependent analysis of $B^0 \rightarrow D^{(*)0} h^0$ with $D^0 \rightarrow K\pi\pi\pi$ decays
- First evidence for $\cos(2\beta) > 0$
- Excludes second solution of unitarity triangle fit
Improving γ precision

- Combining LHCb measurements of $B(s)\to DK^{(*)}$ decays
- BaBar average: $\Rightarrow (70\pm18)^{\circ}$
- Belle average: $\Rightarrow (73\pm14)^{\circ}$
- LHCb improves by factor 2
- All based on tree decays
 - \Rightarrow SM measurements
 - \Rightarrow Access to beyond SM particles through loops in γ measurements using $B\to hh(h)$ decays

*CKMFitter Summer 2014
CP violating phase ϕ_s

- First measurement in $B_s \to J/\psi KK$ with m_{KK} above ϕ resonance
- Preliminary results:

$$\phi_s = 119 \pm 107 \pm 34 \text{ mrad}$$
CP violation in Baryons

- CP violation has never been measured in baryons
- Study local triple-product asymmetries
 - in bins of phase space
 - in bins of decay-plane angle
- Triple-products are robust against systematic uncertainties
- Angular bins for $\Lambda_b \rightarrow p\pi^-\pi^+\pi^-$ show 3.3σ deviation from no-CPV hypothesis
- Weaker signals in phase-space binning and smaller $\Lambda_b \rightarrow p\pi^-K^+K^-$ sample
CPV in charm

- Mass difference of eigenstates still unknown

- No sign of indirect CPV
 - How long will super-weak constraint remain valid?
 - A_{Γ} now constraint to 3×10^{-4} \textit{arXiv:1702.06490}

- Some low p-values in tests for CPV in multi-body ($D^0 \rightarrow 4\pi$) decays \textit{arXiv:1612.03207}
 - Too early to make a claim
Rare decays

Plenty to learn from the not so plentiful
B⁰ → μμ

- LHCb update with Run 2 data
- First single-experiment observation of Bs → μμ (7.8σ)
- No significant signal for Bd → μμ (1.6σ)
- SM looks very healthy here
- First measurement of effective lifetime

\[\tau(B_s \rightarrow \mu^+\mu^-) = 2.04\pm0.44\pm0.05\text{ps} \]
\[B_s \rightarrow \tau^+ \tau^- \]

- First direct limit on \(B_s \) decay
 \[B(B_s \rightarrow \tau^+ \tau^-) < 6.8 \times 10^{-3} \]
- World best limit on \(B_d \) decay
 \[B(B_d \rightarrow \tau^+ \tau^-) < 2.1 \times 10^{-3} \]
- Both at 95% CL

\[\text{Candidates} \]

\[\text{Pull} \]

\[\text{Neural network output} \]
K*μμ and friends

- LHC analyses based on full Run 1 data
 - Awaiting Run 2 updates
- LHCb performs full angular analysis
- Belle, ATLAS and CMS use angular folding, differences in observables, background treatment and control modes

LHCb: JHEP 02 (2016) 104
Belle: BELLE-CONF-1603
ATLAS: ATLAS-CONF-2017-023
CMS: CMS-PAS-BPH-15-008
DHMV: JHEP 12(2014)125
ASZB: EPJC 75 (2015) 382
K*μμ and friends

- LHC analyses based on full Run 1 data
 - Awaiting Run 2 updates
- LHCb performs full angular analysis
- Belle, ATLAS and CMS use angular folding, differences in observables, background treatment and control modes

Also investigating related b→sll channels
- e.g. slight tension in BF(B_s→φμμ)

LHCb: JHEP 02 (2016) 104
Belle: BELLE-CONF-1603
ATLAS: ATLAS-CONF-2017-023
CMS: CMS-PAS-BPH-15-008
DHMV: JHEP 12(2014)125
ASZB: EPJC 75 (2015) 382

JHEP 09 (2015) 179
more $K^*\mu\mu$ friends

- Fits with different phase hypotheses for long-distance contributions
- Minimal influence on short-distance branching fraction
 - Found to be below SM
 - Improved modelling shows no significant change w.r.t. previous analysis of these data
- Scan of Wilson coefficients disfavours SM solution
- Analyses of other channels underway
 - More complex if hadron not pseudo-scalar

$B^+ \rightarrow K\mu\mu$
Lepton flavour universality

A basic principle under attack
Lines of attack

• Tree-level processes
 - $b \rightarrow c\nu$: $R(D)$, $R(D^*)$, … in beauty
 - $c \rightarrow d\nu$: $R(K)$, $R(K^*)$, … in charm

• Penguin/FCNC processes
 - $b \rightarrow d/\bar{s}l$: $R(K)$, $R(K^*)$, … in beauty
 - Charm FCNC remain to be observed
- SM disfavoured by 3.9σ
- New Belle measurement on $R(D^*)$
- Many related measurements in the making
 - $R(J/\psi), R(D^{**}),$ baryonic
- Form factors show no strong impact on discrepancy with SM
 - Bernlochner, Ligeti, Papucci, Robinson, 1703.05330
- Plenty of room for BSM
LU tests in charm

- So far only measurements of branching fractions
 ➡ All ratios above unity
- Direct measurement of ratio can exploit cancellation of uncertainties
- Further insight through q^2-dependent measurement
- To what degree will this be limited by knowledge of form factors?

\[
\begin{align*}
\frac{B(D^0 \rightarrow \pi e^- \nu_e)}{B(D^\ell \rightarrow \pi \mu^- \nu_\mu)} \\
\frac{B(D^0 \rightarrow K^+ (892) e^- \nu_e)}{B(D^\ell \rightarrow K^+ (892) \mu^- \nu_\mu)} \\
\frac{B(D^0 \rightarrow K e^- \nu_e)}{B(D^\ell \rightarrow K \mu^- \nu_\mu)}
\end{align*}
\]

based on latest BF PDG averages

\[
R^e_{\mu} / R_{\mu / e}(q^2)
\]

\[
S. Faijfer et al., PRD 91 (2015) 094009
\]
• Moderate tension with SM
 ➔ LHCb Run 1 result

• Would be clear theoretical signature

• Updates eagerly awaited…
\(R(K^*) \)

- Measuring double ratio

\[
R_{K*0} = \frac{B(B^0 \to K^{*0} \mu^+\mu^-)}{B(B^0 \to K^{*0} e^+e^-)} \cdot \frac{B(B^0 \to K^{*0} J/\psi(\to \mu^+\mu^-))}{B(B^0 \to K^{*0} J/\psi(\to e^+e^-))}.
\]

- Measuring in two bins of \(q^2 \)

 \(\Rightarrow \) Low: 0.045-1.1, central: 1.1-6 GeV/c

- Using full Run 1 data

- Veto mis-ID and partially reconstructed background

- Fits separated by trigger three categories for electron mode

 \(\Rightarrow \) Results in good agreement

- Main systematics due to simulation corrections and residual backgrounds (for central \(q^2 \) bin)

- Cross-checks with various control channels
\[R(K^*) = \frac{B(B^0 \rightarrow K^{*0} \mu^+\mu^-)}{B(B^0 \rightarrow K^{*0} J/\psi(\rightarrow \mu^+\mu^-))} / \frac{B(B^0 \rightarrow K^{*0} e^+e^-)}{B(B^0 \rightarrow K^{*0} J/\psi(\rightarrow e^+e^-))}. \]

- Measuring double ratio

- Measuring in two bins of \(q^2 \)
 - Low: 0.045-1.1, central: 1.1-6 GeV/c\(^2\)

- Using full Run 1 data

- Veto mis-ID and partially reconstructed background

- Fits separated by trigger three categories for electron mode
 - Results in good agreement

- Main systematics due to simulation corrections and residual backgrounds (for central \(q^2 \) bin)

- Cross-checks with various control channels
Preliminary results for $R(K^*)$

<table>
<thead>
<tr>
<th></th>
<th>low-q^2</th>
<th>central-q^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{K^*0}</td>
<td>$0.660 \pm 0.110 \pm 0.024$</td>
<td>$0.685 \pm 0.113 \pm 0.047$</td>
</tr>
<tr>
<td>95% CL</td>
<td>0.517–0.891</td>
<td>0.530–0.935</td>
</tr>
<tr>
<td>99.7% CL</td>
<td>0.454–1.042</td>
<td>0.462–1.100</td>
</tr>
</tbody>
</table>
Outlook

Towards a flavourful future
A flavourful decade

- Plus lots of activity on charged lepton flavour
 - MEG, mu3e, mu2e, COMET, g-2, ...
LHCb upgrade

Apr 2017

- With increased luminosity hadron channels would saturate
 - Limited by hardware trigger
- Upgrade to allow full detector readout at 40 MHz and increased luminosity: collect $\sim 8fb^{-1}$/ year
 - Requires several new detectors (all tracking plus RICH) and new readout electronics otherwise
- Full software trigger
 - Massively improved trigger efficiencies
 - Offline quality reconstruction in trigger
- Maintain/improve current level of detector performance
- Phase-Ib consolidation and Phase-II upgrade planned in LS3 and LS4

LHCb

LHCb run-1 LHC run-2 LHC run-3 LHC run-4

LHCb Phase-I upgrade Phase-II

LHC run-1 LHC run-2 LHC run-3 LHC run-4

LHC run-1 LHC run-2 LHC run-3 LHC run-4

LHCb Phase-I upgrade Phase-II

• With increased luminosity hadron channels would saturate
 ➡ Limited by hardware trigger
• Upgrade to allow full detector readout at 40 MHz and increased luminosity: collect $\sim 8fb^{-1}$/ year
 ➡ Requires several new detectors (all tracking plus RICH) and new readout electronics otherwise
• Full software trigger
 ➡ Massively improved trigger efficiencies
 ➡ Offline quality reconstruction in trigger
• Maintain/improve current level of detector performance
• Phase-Ib consolidation and Phase-II upgrade planned in LS3 and LS4

UNDER CONSTRUCTION
Future potential

• Pure software trigger will significantly improve efficiencies,
 ➡ Particularly for soft final states
 ▶ Charm, tau, strange, multi-body
 ➡ Benefits exceeding increase in luminosity

• Healthy competition with Belle II during LHCb Phase-I upgrade

• LHCb Phase-II upgrade will boost yields by another order of magnitude
 ➡ The ultimate precision frontier

• Don’t forget the kaons…
Conclusion

• LHCb has taken over the leading role in flavour physics

• No smoking gun signal for physics beyond the SM

• Several hints demand more precise and complementary measurements as well as advances on the theoretical side

 ➡ New result shown on $R(K^*)$

• Good chance that strong signals will emerge with Run 2

 ➡ First results shown today

• Need LHCb upgrades to probe to Standard Model level precision

• Next decade will be flavourful

 ➡ Belle II, BESIII, COMET, $g-2$, LHCb Run 2, LHCb upgrade(s), MEG, mu2e, mu3e, NA62, …