Dispersion relation for hadronic light-by-light scattering

Massimiliano Procura¹,⁸, Gilberto Colangelo²,⁷, Martin Hoferichter³,c, and Peter Stoffer⁴,d

¹CERN Theory Division, 1211 Geneva 23, Switzerland
²Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
³Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550, USA
⁴Helmholtz-Institut für Strahlen- und Kernphysik (Theory) and Bethe Center for Theoretical Physics, University of Bonn, 53115 Bonn, Germany

Abstract. The largest uncertainties in the Standard Model calculation of the anomalous magnetic moment of the muon ($g−2)_μ$ have come from hadronic contributions. In particular, in a few years the subleading hadronic light-by-light (HLbL) contribution might dominate the theory uncertainty. We present a dispersive description of the HLbL tensor, which is based on unitarity, analyticity, crossing symmetry, and gauge invariance. This opens up the possibility of a data-driven determination of the HLbL contribution to $(g−2)_μ$, with the aim of reducing model dependence and achieving a reliable error estimate.

Our dispersive approach defines unambiguously the pion-pole and the pion-box contribution to the HLbL tensor. Using Mandelstam’s double-spectral representation, we have proven that the pion-box contribution coincides exactly with the one-loop scalar QED amplitude, multiplied by the appropriate pion vector form factors.

1 Introduction

The anomalous magnetic moment of the muon $(g−2)_μ$ has been measured [1] and computed to very high precision of about 0.5 ppm (see e.g. [2]). For more than a decade, a discrepancy has persisted between the experiment and the Standard Model prediction, now of about 3σ. Forthcoming measurements at FNAL [3] and J-PARC [4] will update the experimental value. The aim is to increase the precision by a factor of 4 and check for systematic errors.

The main uncertainty of the theory prediction is due to strong interaction effects. At present, the largest error arises from hadronic vacuum polarisation, which, however, forthcoming data from $e^+e^−$ experiments [2] may help reduce. Thus in a few years, the subleading hadronic light-by-light contribution might dominate the theory error. In present calculations of the HLbL contribution, systematic errors are difficult, if not impossible, to quantify, due to model dependence. A new strategy is required to provide a solid estimate of the theory uncertainties and reduce them. In the recent past, lattice QCD has made remarkable progress in this direction, and may play a leading role in this field in the near future [8–12]. In [13, 14], we have presented the first dispersive description of the HLbL tensor.² By making use of the fundamental principles of unitarity, analyticity, crossing symmetry, and gauge invariance, we provide an approach that reduces model dependence and allows for a more data-driven determination of the HLbL contribution to $(g−2)_μ$.

Here, we report on an improvement of our dispersive framework [16, 17]. We have constructed a generating set of Lorentz structures for the HLbL tensor that is free of kinematic singularities and zeros. This simplifies significantly the calculation of the HLbL contribution to $(g−2)_μ$. Within our dispersive formalism, the definitions of both the pion-pole and pion-box topologies are unambiguous. By constructing a Mandelstam representation for the scalar functions, we prove that the box topologies are equal to the scalar QED (sQED) contribution multiplied by pion vector form factors. First numerical results for the pion-box topologies are shown and future steps are discussed.

2 Lorentz structure of the HLbL tensor

In order to study the HLbL contribution to $(g−2)_μ$, we need a description of the HLbL tensor, namely the hadronic Green’s function of four quark electromagnetic currents,²

²A different approach, which aims at a dispersive description of the muon vertex function instead of the HLbL tensor, has been presented in [15].
evaluated in pure QCD:

\[\Pi^{\mu\nu}(q_1, q_2, q_3) = -i \int d^4x \, d^4y \, d^4z \, e^{-i(q_1 \cdot x + q_2 \cdot y + q_3 \cdot z)} \times \langle 0| T(\Pi^{\mu\nu}(x) \Pi^{\nu\lambda}(y) \Pi^{\lambda\sigma}(z)) | 0 \rangle, \]

where \(q_4 = q_1 + q_2 + q_3 \). The HLbL tensor can be written a priori in terms of 138 basic Lorentz structures built out of the metric tensor and the four-momenta [18]. Our first task is to write the HLbL tensor in terms of Lorentz structures that satisfy the WT identities, while at the same time the scalar functions that multiply these structures must be free of kinematic singularities and zeros. A recipe for the construction of these structures has been given by Bardeen, Tung [19], and Tarrach [20] for generic photon amplitudes. Gauge invariance imposes 95 linear relations between the 138 initial scalar functions. A generating set consisting of 43 elements can be constructed following Bardeen and Tung [19]. However, as it was shown by Tarrach [20], such a set is not free of kinematic singularities and has to be supplemented by additional structures. We find a redundant generating set of dimension 54:

\[\Pi^{\mu\nu}(q_1, q_2, q_3) = \sum_{i=1}^{54} T_{i}^{\mu\nu} \Pi_i(s, t, u), \]

where the scalar functions \(\Pi_i \) are free of kinematic singularities and zeros, and therefore suited for a dispersive description. The Mandelstam variables are defined by \(s = (q_1 + q_2)^2, t = (q_1 + q_3)^2, u = (q_2 + q_3)^2 \).

In 4 space-time dimensions, there are two additional linear relations, hence a basis consists of 41 elements [21, 22].

are only seven distinct Lorentz structures:

\[T_1^{\mu\nu} = \epsilon^{\mu\nu\rho\sigma} q_{1\rho} q_{2\sigma}, \]

\[T_4^{\mu\nu} = (q_2^2 q_1^\rho - q_1 \cdot q_3 q_2^\rho)(q_4 q_3^\rho - q_3 \cdot q_4 q_2^\rho), \]

\[T_6^{\mu\nu} = (q_2^2 q_1^\rho - q_1 \cdot q_3 q_2^\rho)(q_4 q_3^\rho - q_3 \cdot q_4 q_2^\rho) + q_1^2 q_3^\rho q_3 q_4 q_2^\rho, \]

\[T_8^{\mu\nu} = (q_2^2 q_1^\rho - q_1 \cdot q_3 q_2^\rho)(q_4 q_3^\rho - q_3 \cdot q_4 q_2^\rho) + q_1^2 q_3^\rho q_3 q_4 q_2^\rho, \]

\[T_9^{\mu\nu} = (q_2^2 q_1^\rho - q_1 \cdot q_3 q_2^\rho)(q_4 q_3^\rho - q_3 \cdot q_4 q_2^\rho) + q_1^2 q_3^\rho q_3 q_4 q_2^\rho, \]

\[T_{10}^{\mu\nu} = (q_2^2 q_1^\rho - q_1 \cdot q_3 q_2^\rho)(q_4 q_3^\rho - q_3 \cdot q_4 q_2^\rho) + q_1^2 q_3^\rho q_3 q_4 q_2^\rho, \]

\[T_{11}^{\mu\nu} = (q_2^2 q_1^\rho - q_1 \cdot q_3 q_2^\rho)(q_4 q_3^\rho - q_3 \cdot q_4 q_2^\rho) + q_1^2 q_3^\rho q_3 q_4 q_2^\rho. \]

All the remaining ones are just crossed versions of the seven structures above. As each structure fulfills the WT identities, both crossing symmetry and gauge invariance are implemented in a manifest way in the set \(\{ T_{i}^{\mu\nu} \} \).

3 HLbL contribution to \((g - 2)_\mu\)

The HLbL contribution to \(a_\mu = (g - 2)_\mu/2 \) can be extracted with the help of well-known Dirac projector techniques [23]. With our decomposition of the HLbL tensor in 54 structures, this amounts to the calculation of the following two-loop integral:

\[a_\mu^{\text{HLbL}} = -\frac{e^4}{48m^2} \int \frac{d^4q_1}{(2\pi)^4} \frac{d^4q_2}{(2\pi)^4} \frac{1}{q_1^2 q_2^2 (q_1 + q_2)^2} \times \frac{1}{(p + q_1)^2 - m^2} \times \frac{1}{(p - q_2)^2 - m^2} \]

\[\times \text{Tr} \left((p + m_\gamma) \gamma_\mu (p + m_\gamma) \gamma_\nu \right) \]

\[\times \frac{\partial}{\partial q_{4\mu}} \left(T_{i}^{\mu\nu}(q_1, q_2, q_4 - q_1 - q_2) \right) \bigg|_{q_{4}=0} \]

\[\times \Pi_i(q_1, q_2, -q_1 - q_2). \]

After a Wick rotation of the momenta, five of the eight loop integrals can be carried out with the technique of
Gegenbauer polynomials [24]. We have checked that this
type of rotation is justified even in the presence of anomalous
thresholds in the scalar functions \(\Pi \). In analogy to the
pion-pole contribution [25], a master formula for the
full HLbL contribution to \((g - 2)_\mu\) can be worked out:
\[
d_{\mu}^{HLbL} = \frac{2\alpha}{3\pi^2} \int_0^\infty dq_1 \int_0^\infty dq_2 \int_{-1}^1 d\tau \sqrt{1 - \tau^2} Q_1^3 Q_2^3
\times \sum_{i=1}^{12} T_i(Q_1, Q_2, \tau) \Pi_i(Q_1, Q_2, \tau),
\]
where \(\alpha = e^2/(4\pi) \) and the \(T_i \) are integration kernels. With
\(Q \) we denote Euclidean momenta. Only twelve independ-
ent linear combinations of the hadronic scalar functions
\(\Pi \) contribute, denoted by \(\Pi_i \) [17]. They have to be evalu-
ated for the reduced kinematics
\[
s = -Q_1^2, \quad t = -Q_2^2, \quad u = -Q_1^2,
q_1^2 = -Q_1^2, \quad q_2^2 = -Q_2^2,
q_3^2 = -Q_3^2 - 2Q_1^2Q_2\tau - Q_2^2, \quad q_4^2 = 0.
\]

4 Mandelstam representation

Although the scalar functions in the master formula (6)
are needed only for the reduced kinematics (7), where the
limit \(q_4 \to 0 \) is taken, we define the dispersion relation in the
Mandelstam variables of the four-point function with general kinematics and evaluate it only afterwards for the
special case \(q_4 \to 0 \). This procedure has the following ad-
vantage: the HLbL contribution to \((g - 2)_\mu\) splits into contri-
butions from different topologies, each of them linked to a
specific sub-process, which is either data input or again a
dispersively reconstructed quantity. These different con-
tributions are discussed in the following.

Gauge invariance, encoded in the decomposition (3),
leads to Lorentz structures \(T_{\mu\nu\lambda\sigma}^{\text{loop}} \) of mass dimension 4,
6, and 8. Hence, we expect the scalar functions \(\Pi \) to be
rather strongly suppressed at high energies. Thus we write
down unsubtracted double-spectral (Mandelstam) represen-
tations for the \(\Pi \) [26], i.e. parameter-free dispersion relations. The input to the dispersion relation are the
residues at poles (due to single-particle intermediate states) and the discontinuities along branch cuts (due to
two-particle intermediate states). Both are defined by the
unitarity relation, in which the intermediate states are al-
ways on-shell. We neglect contributions from intermediate
states consisting of more than two particles in the primary
cut. Heavier intermediate states are expected to be sup-
pressed by higher thresholds and smaller phase space, in
agreement with the outcome of model calculations.

In the Mandelstam representation, the sum over inter-
mediate states in the unitarity relations (for the primary
and secondary cuts) translates into a splitting of the HLbL
tensor into several topologies, shown in fig. 1. The first
topology consists of the pion pole, i.e. the terms arising
from a single pion intermediate state. This contribution is
well-known [25] and given by
\[
\Pi_1^{\text{p-pole}} = \frac{-F_{\gamma\gamma\gamma\gamma}(-Q_1^2, -Q_2^2)F_{\gamma\gamma\gamma\gamma}(-Q_1^2, 0)}{Q_3^2 + M_\pi^2},
\]
\[
\Pi_2^{\text{p-pole}} = \frac{-F_{\gamma\gamma\gamma\gamma}(-Q_1^2, -Q_2^2)F_{\gamma\gamma\gamma\gamma}(-Q_1^2, 0)}{Q_1^2 + M_\pi^2},
\]
where \(F_{\gamma\gamma\gamma\gamma} \) denotes the pion transition form factor (for
off-shell photons but an on-shell pion).

The other topologies are obtained by selecting two-pion intermediate states in the primary cut. The sub-
process \(\gamma^* \to \pi \pi \) is again cut in the crossed channel.
If we single out the pion-pole contribution in both of the
sub-processes, we obtain the box topologies for HLbL.
For higher intermediate states in the crossed channel of
\(\gamma^* \to \pi \pi \), we obtain boxes with multi-particle cuts in-
stead of poles in the sub-processes.

By explicitly constructing the Mandelstam representa-
tion, we have shown that the box topologies in the sense of
unitarity have the same analytic structure as the one-
loop sQED contribution, multiplied with pion electromagnetic form factors \(F_\gamma(q_i^2) \) for each of the off-shell photons (FsQED). The dispersion relation defines unambiguously
this particular \(q_3^2 \) dependence. With the construction of the
Mandelstam representation, we prove that FsQED and box
topologies are the same. Note that the sQED loop contribu-
tion in terms of Feynman diagrams consists of boxes,
triangles, and bulbs, but that the corresponding unitarity
diagrams are just box topologies. This can be understood
as follows: in sQED, the appearance of triangle and bulb
diagrams is due to the seagull vertex, needed to ensure
gauge invariance. In our formalism, gauge invariance is
already encoded in the tensor decomposition (3). If the
sQED contribution is projected on this tensor decomposi-
tion, which separates kinematics from dynamics, one can
check that the dynamical singularities of the scalar func-
tions \(\Pi \) in sQED are the ones of a box topology.

The equivalence of the pion-box topologies with
FsQED allows us to derive compact expressions for the
contribution to the scalar functions \(\Pi \) in terms of two-
dimensional Feynman parameter integrals. In the limit
$q_4 \to 0$, they are given by

$$\Pi_\gamma^{\text{box}}(q_1^2,q_2^2,q_3^2) = F_\gamma^\pi(q_1^2) F_\gamma^\pi(q_2^2) F_\gamma^\pi(q_3^2) \times \frac{1}{16\pi^2} \int_0^1 dx \int_0^{1-x} dy I(x,y),$$ \hspace{1cm} (9)

where

$$I_1(x,y) = \frac{2}{3} \frac{(1-2y)(1-2x-2y)(1-6x(1-x))}{\Delta_{123}^2},$$

$$I_4(x,y) = -\frac{2}{3} \frac{(1-2y)(1+2x(1-3x(1-2y)-6y(1-y)))}{\Delta_{123}^2},$$

$$I_5(x,y) = -\frac{4}{3} \frac{(1-2y)^2(1-2y)^2y(1-y)}{\Delta_{123}^3},$$

$$I_{16}(x,y) = \frac{4}{3} \frac{x(1-2y)(1-2y)}{\Delta_{123}^2 \Delta_{13}} \left(\frac{1}{\Delta_{123}^2} + \frac{1}{\Delta_{13}} \right),$$

$$I_{19}(x,y) = -\frac{4}{3} \frac{(1-2y)^2(1-2y)(1-2x-2y)}{\Delta_{123}^3},$$

$$I_{31}(x,y) = -\frac{8}{3} \frac{x^2(1-x)(1-2x-y)^2}{\Delta_{123}^2 \Delta_{13}^2} \frac{1}{\Delta_{123}} \left(\frac{1}{\Delta_{123}^2} + \frac{1}{\Delta_{13}} \right),$$

$$I_{39}(x,y) = \frac{4}{3} \frac{(1-2y)(1-2y)^2y(1-y)(1-2x-2y)}{\Delta_{123}^3},$$

$$I_{42}(x,y) = \frac{4}{3} \frac{x(1-2x)(1-2y)(1-6y(1-y))}{\Delta_{321}^3} \times \left(\frac{1}{\Delta_{321}} + \frac{1}{\Delta_{21}} \right),$$

$$I_{50}(x,y) = 0,$$ \hspace{1cm} (10)

and

$$\Delta_{ij} = M_\pi^2 - xyq_i^2 - x(1-x-y)q_j^2 - y(1-x-y)q_j^2,$$

$$\Delta_{ij} = M_\pi^2 - x(1-x)q_i^2 - y(1-y)q_j^2.$$ \hspace{1cm} (11)

The remaining functions Π_i that enter the master formula can be obtained with crossing relations permuting only q_1, q_2, and q_3, which are still valid in the limit $q_4 \to 0$.

For a numerical analysis of the pion box contribution, the only input needed is the pion vector form factor in the primary cut. We stress that in our approach we need to solve the dispersion relation for the HLbL tensor at fixed photon virtualities. The input quantities in our dispersive description are the pion transition form factor $F_\gamma^\pi(q_1^2)$, the pion electromagnetic form factor $F_\gamma^\pi(q_1^2)$, and the $\gamma^*\gamma^* \to \pi\pi$ helicity partial waves. In the absence of experimental data on the doubly-virtual processes, these quantities will be reconstructed again dispersively [13, 29–36].

Our dispersive formalism defines unambiguously both the pion-pole and pion-box contribution. They are treated without any approximation. For the two-pion rescattering contribution a partial-wave expansion is employed.

We have limited the discussion to pions although the formalism can be extended to higher pseudoscalar poles (η, η') or KK intermediate states [37–40]. Future work will include model estimates of the contribution from intermediate states with more than two pseudoscalar particles, and the incorporation of high-energy constraints from perturbative QCD.

Figure 2. Different parameterization of the pion vector form factor for space-like kinematics used in our numerical analysis of the pion box contribution to a_μ.
Our dispersive approach is expected to help substantially reduce model dependence in HLbL scattering through a more data-driven evaluation of the HLbL contribution to \((g-2)_\mu\). A careful numerical study is currently under way, with the final goal to identify the experimental input with the largest impact on the theory uncertainty.

The speaker (MP) thanks the organizing committee of the Workshop FCCP2015 for the kind invitation. We thank J. Bijnens, J. Gasser, M. Knecht, B. Kubis, H. Leutwyler, A. Nyffeler, and S. Scherer for useful discussions. We gratefully acknowledge financial support by the Swiss National Science Foundation, the DFG (CRC 16, “Subnuclear Structure of Matter”), the European Community’s 7th Framework Programme (Marie Curie Intra-European Fellowship) and the DOE (Grant No. DE-FG02-00ER41132).

References

