Top quark mass and property measurements at ATLAS experiment

Chengguang ZHU
Shandong University, China
On behalf of ATLAS collaboration
6M $t \bar{t}$ evt @ 8 TeV & 25 fb-1

- Decay before hadronization (probe quasi-bare quark), Access to properties through decay products
- Sensitive to new physics: spin, Charge, FCNC…

According to the decay mode of the W-boson, the $t \bar{t}$ channel are clarified into di-lepton, single-lepton and fully-hardronic.
- **Dilepton channel**: Template of m_{lb} (mass lepton and b-jet, top mass are not able to constructed due to neutrino exit in top decay) are produced from MC. Maximum likelihood method used to extract the top mass and JES, bJES. s/B division simultaneously.

- **All hardronic channel**: The $R_{3/2}$ (ratio of reconstructed top mass to w mass) defined as the observable. Fitted by template distribution with generalized least square method (considering bin to bin correlations).

The main systematic comes from JES and bJES

Summary of the measurements

ATLAS Preliminary \(m_{\text{top}} \) summary - Aug. 2016, \(L_{\text{int}} = 4.6 \, \text{fb}^{-1} - 20.3 \, \text{fb}^{-1} \)

<table>
<thead>
<tr>
<th>Channel</th>
<th>(m_{\text{top}}) (GeV)</th>
<th>(\pm) (GeV)</th>
<th>Stat.</th>
<th>Syst.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>single top*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONF-2014-055</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L_{\text{int}} = 20.3 , \text{fb}^{-1})</td>
<td>172.2</td>
<td>± 2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L_{\text{int}} = 4.7 , \text{fb}^{-1})</td>
<td>172.3</td>
<td>± 1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L_{\text{int}} = 4.7 , \text{fb}^{-1})</td>
<td>173.8</td>
<td>± 1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L_{\text{int}} = 20.2 , \text{fb}^{-1})</td>
<td>173.0</td>
<td>± 0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L_{\text{int}} = 20.2 , \text{fb}^{-1})</td>
<td>173.8</td>
<td>± 1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L_{\text{int}} = 20.3 , \text{fb}^{-1})</td>
<td>173.0</td>
<td>± 0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L_{\text{int}} = 20.3 , \text{fb}^{-1})</td>
<td>173.8</td>
<td>± 1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| \(\sigma(t\bar{t}) \) dilepton | \(L_{\text{int}} = 20.3 \, \text{fb}^{-1} \) | 172.9 ± 2.5 | 2.6 |
| \(\sigma(t\bar{t}+1\text{-jet}) \) | \(L_{\text{int}} = 20.3 \, \text{fb}^{-1} \) | 173.7 ± 2.3 | 2.1 |

172.84 ± 0.70

ATLAS Comb. ± 1 \(\sigma \)
stat. uncertainty
stat. @ JSF @ bJSF uncertainty
total uncertainty
*Preliminary, \(\rightarrow \) Input to comb.
A comprehensive observables related to top spin are measured with dilepton channel in one go, considering 3 orthogonal polarization directions of top quarks.

In the formula below the direction (a/b) representing 3 possible direction
1. k: top quark flying direction,
2. n: perpendicular to k and beam,
3. r: the third direction

\[
\frac{1}{\sigma} \frac{d^2\sigma}{d\cos \theta_+ d\cos \theta_-} = \frac{1}{4} (1 + B_+^a \cos \theta_+^a + B_-^b \cos \theta_-^b - C(a, b) \cos \theta_+^a \cos \theta_-^b)
\]

Totally 15 observables are measured, 3 for top polarization, 3 for anti-top polarization, 9 for spin correlations.
All the measurements are consistent with SM prediction (diamond in plots)
The azimuthal opening angle, between the momentum directions of the top quark pair decay products in the laboratory frame $\Delta \phi$.

$$f_{SM} = 1.20 \pm 0.05 \text{(Stat)} \pm 0.13 \text{(Syst)}$$
Single lepton channel: the angle between the W decay product and the b-jet in the W boson rest frame are measured.

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos \theta^*} = \frac{3}{4} \left(1 - \cos^2 \theta^*\right) F_0 + \frac{3}{8} \left(1 - \cos \theta^*\right)^2 F_L + \frac{3}{8} \left(1 + \cos \theta^*\right)^2 F_R$$

The most precise measurement up to date is $F_0 = 0.709 \pm 0.019$, $F_L = 0.299 \pm 0.015$ and $F_R = -0.008 \pm 0.014$, consistent with SM predictions.

- Top quarks pair production at NLO give non-zero charge asymmetry from interferences between diagrams or enhanced by other models.

- t quark is more forward than anti-t quark.
Dilepton channel

\[A_{\ell\ell}^C = \frac{N(\Delta|\eta| > 0) - N(\Delta|\eta| < 0)}{N(\Delta|\eta| > 0) + N(\Delta|\eta| < 0)} \]

\[A_{t\bar{t}}^C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)} \]

ATLAS
\[\sqrt{s} = 8 \text{ TeV, 20.3 fb}^{-1} \]

Inclusive - Parton level

\[A_{\ell\ell}^C = 0.008 \pm 0.006 \]

\[A_{t\bar{t}}^C = 0.021 \pm 0.016. \]
Summary of the measurement and with CMS results added

ATLAS+CMS Preliminary

<table>
<thead>
<tr>
<th>Dilepton asymmetry</th>
<th>LHCtopWG</th>
<th>$\sqrt{s} = 8$ TeV</th>
<th>Sept 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS l+jets</td>
<td>ATLAS l+jets</td>
<td>A_T^{ℓ}</td>
<td>0.021 ± 0.011 ± 0.012</td>
</tr>
<tr>
<td>ATLAS dilepton</td>
<td>ATLAS dilepton</td>
<td>A_T^{ℓ}</td>
<td>0.011 ± 0.011 ± 0.007</td>
</tr>
<tr>
<td>CMS l+jets template</td>
<td>CMS l+jets template</td>
<td>A_T^{ℓ}</td>
<td>0.003 ± 0.003 ± 0.003</td>
</tr>
<tr>
<td>CMS l+jets</td>
<td>CMS l+jets</td>
<td>A_T^{ℓ}</td>
<td>0.001 ± 0.007 ± 0.004</td>
</tr>
<tr>
<td>CMS dilepton</td>
<td>CMS dilepton</td>
<td>A_T^{ℓ}</td>
<td>0.0111 ± 0.0004</td>
</tr>
<tr>
<td>ATLAS l+jets boosted</td>
<td>ATLAS l+jets boosted</td>
<td>A_T^{ℓ}</td>
<td>0.042 ± 0.019 ± 0.026</td>
</tr>
<tr>
<td>ATLASS l+jets boosted</td>
<td>ATLASS l+jets boosted</td>
<td>A_T^{ℓ}</td>
<td>0.0160 ± 0.0004</td>
</tr>
</tbody>
</table>

+ve5 0 -0.05 0.05

A_C
\(\bar{t}t \rightarrow Wb(W \rightarrow l\nu)Hq(H \rightarrow bb) \) are defined as signals

Likelihood discriminator utilizing the kinematic info from resonance distribution (Lepontic top mass, hadronic top mass and Higgs mass) is defined to separate the signal and background.

Combine the result of analysis of \(H \rightarrow WW^*, \gamma \gamma, \tau \tau \), the 95% CL upper limits on the \(t \rightarrow Hc \) and \(t \rightarrow Hu \) branching ratios are 0.46% and 0.45% respectively.

[arXiv:1509.06047v2]
- $t\bar{t} \rightarrow Wb(W \rightarrow lv)Zq(H \rightarrow ll)$ are defined as signals
- Background are estimated and validated with MC and control data. No signal excess observed and the at BR<7×10^{-4}(95%CL)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Yields</th>
</tr>
</thead>
<tbody>
<tr>
<td>WZ</td>
<td>$1.3 \pm 0.2 \pm 0.6$</td>
</tr>
<tr>
<td>$t\bar{t}V$</td>
<td>$1.5 \pm 0.1 \pm 0.5$</td>
</tr>
<tr>
<td>tZ</td>
<td>$1.0 \pm 0.1 \pm 0.5$</td>
</tr>
<tr>
<td>Fake leptons</td>
<td>$0.7 \pm 0.3 \pm 0.4$</td>
</tr>
<tr>
<td>Other backgrounds</td>
<td>$0.2 \pm 0.1 \pm 0.1$</td>
</tr>
<tr>
<td>Total background</td>
<td>$4.7 \pm 0.4 \pm 1.0$</td>
</tr>
<tr>
<td>Data</td>
<td>3</td>
</tr>
<tr>
<td>Signal efficiency $[\times10^{-4}]$</td>
<td>$7.8 \pm 0.1 \pm 0.8$</td>
</tr>
</tbody>
</table>

[arXiv:1508.05796v2]
Summary of the FCNC measurement, including the CMS results

8TeV \int Ldt = 20.2 \text{fb}^{-1}

ATLAS+CMS Preliminary 95%CL upper limits

LHCTopWG

November 2016

Each limit assumes that all other processes are zero

Theory predictions from arXiv:1311.2026

- SM
- 2HDM(FV)
- 2HDM(FC)
- MSSM
- RPV
- RS

[7] CMS-PAS-TOP-12-039

10^{-16} \quad 10^{-13} \quad 10^{-10} \quad 10^{-7} \quad 10^{-4} \quad 10^{-1}

Branching ratio

t \rightarrow Hc

t \rightarrow Hu

t \rightarrow \gamma c

t \rightarrow \gamma u

t \rightarrow gc

t \rightarrow gu

t \rightarrow Zc

t \rightarrow Zu

Dilepton channel

Lepton from top decay to tag the charge of the b quark and charge of muon in b-jets used to probe the charge asymmetry

$$A^{ss} = \frac{P(b \to \ell^+) - P(\bar{b} \to \ell^-)}{P(b \to \ell^+) + P(\bar{b} \to \ell^-)}, \quad A^{os} = \frac{P(b \to \ell^-) - P(\bar{b} \to \ell^+)}{P(b \to \ell^-) + P(\bar{b} \to \ell^+)}$$

The charge asymmetry is the sum of the contributions from several CP asymmetry cases

$$A^{ss} = r_b A_{\text{mix}}^{b\ell} + r_c \left(A_{\text{dir}}^{bc} - A_{\text{dir}}^{c\ell} \right) + r_{\bar{c}\bar{c}} \left(A_{\text{mix}}^{bc} - A_{\text{dir}}^{c\ell} \right)$$

$$A^{os} = \tilde{r}_b A_{\text{dir}}^{b\ell} + \tilde{r}_c \left(A_{\text{mix}}^{bc} + A_{\text{dir}}^{c\ell} \right) + \tilde{r}_{\bar{c}\bar{c}} A_{\text{dir}}^{c\ell}$$
The change asymmetry is measured to compatible to zero, consistent with the simulation with no CP violation embedded.

The largest uncertainty is statistical uncertainty and then from the modeling and JES.

\[A^{ss} = -0.007 \pm 0.006 \text{ (stat.)} \pm 0.002 \text{ (expt.)} \pm 0.005 \text{ (model)} \]
\[A^{os} = 0.0041 \pm 0.0035 \text{ (stat.)} \pm 0.0013 \text{ (expt.)} \pm 0.0027 \text{ (model)} \]

The charge asymmetry are converted to the cp asymmetries, which are consistent with 0.
Summary

- The most precise top mass measurement is 172.84±0.70GeV from ATLAS, dilpton channel combination. This top mass is corresponding to the top mass used in the ttbar MC simulation.

- The top/W polarization, spin correlation, and top charge asymmetry are compatible with SM prediction at the current precision.

- FCNC process are far from discovered with now data even with the enhanced cross section according to BSM