A search for the dimuon decay of the Higgs boson was performed using data corresponding to an integrated luminosity of 36.1 fb^{-1} collected with the ATLAS detector in pp collisions at $\sqrt{s} = 13$ TeV at the Large Hadron Collider. No significant excess is observed above the expected background. The observed (expected) upper limit on the cross section times branching ratio is 3.0 (3.1) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125 GeV. When combined with the pp collision data at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV, the observed (expected) upper limit is 2.8 (2.9) times the Standard Model prediction.
In July 2012, the ATLAS and CMS Collaborations discovered a new particle with a mass of approximately 125 GeV [1–3] at the CERN Large Hadron Collider (LHC). Subsequent measurements have indicated that this particle is consistent with the Standard Model (SM) Higgs boson [4–10], denoted by H. The $H \rightarrow \mu\mu$ decay is a sensitive channel in which the Higgs coupling to second-generation fermions can be measured with a clean final-state signature at the LHC. The SM branching ratio for the Higgs boson to dimuon decay is 2.18×10^{-4} [11] for $m_H = 125$ GeV. Several scenarios beyond the SM [12–14] predict a higher branching ratio. Any deviation from the SM prediction could be a sign of new physics. The ATLAS experiment carried out a search for the $H \rightarrow \mu\mu$ process using data collected in 2011 and 2012 (LHC Run 1), corresponding to integrated luminosities of $4.5 \, \text{fb}^{-1}$ at a center-of-mass energy $\sqrt{s} = 7 \, \text{TeV}$ and $20 \, \text{fb}^{-1}$ at $\sqrt{s} = 8 \, \text{TeV}$ [15]. For a Higgs boson with a mass of 125 GeV, an observed (expected) upper limit of 7.1 (7.2) was set at the 95% confidence level (C.L.) on the signal strength, defined as the production rate of the $H \rightarrow \mu\mu$ process normalized to the SM prediction. The CMS experiment also performed searches for the $H \rightarrow \mu\mu$ process with data collected in LHC Run 1 [16]. The observed (expected) upper limit from CMS on the signal strength was 7.4 (6.5) at the 95% C.L. for a Higgs boson with $m_H = 125$ GeV.

In this Letter, a search for the dimuon decay of the Higgs boson is presented. The Higgs boson mass is assumed to be $m_H = 125$ GeV for all the results presented in this Letter. The search is performed using pp collision data recorded with the ATLAS detector in 2015 and 2016 at $\sqrt{s} = 13 \, \text{TeV}$. The data set corresponds to an integrated luminosity of 36.1 fb$^{-1}$. This analysis selects events with exactly two opposite-charge muons and classifies them into eight orthogonal categories. Two categories are defined using a multivariable discriminant and provide good sensitivity to the vector-boson fusion (VBF) process. Signal events produced in the VBF process tend to have two high-p_T forward jets in opposite detector hemispheres and little hadronic activity between them. The other six categories are sensitive to signal events produced in the gluon–gluon fusion (ggF) process and are defined with different requirements on muon pseudorapidity (η) and the transverse momentum of the dimuon system ($p_{\mu\mu}^T$). The dominant irreducible background is the $Z/\gamma^* \rightarrow \mu\mu$ (Drell-Yan) process. A simultaneous fit to distributions of the dimuon invariant mass $m_{\mu\mu}$ in all the categories is performed in the range 110 to 160 GeV to extract the overall $H \rightarrow \mu\mu$ signal strength and determine the background normalizations and shapes. The fitting range is chosen to avoid the Z boson mass peak and have enough data events to constrain the background.

The ATLAS detector [17] at the LHC covers nearly the entire solid angle around the collision point [18]. It consists of an inner tracking detector (ID) surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer (MS) incorporating three large superconducting toroidal magnets. Events used in this analysis were recorded using a combination of single-muon triggers, with the transverse momentum (p_T) threshold being 26 GeV for isolated muons or 50 GeV for muons without any isolation requirement imposed. The trigger efficiency is about 95% for the signal processes.

Monte Carlo (MC) simulated samples are used to optimize the event selection, to model the signal processes and to develop an analytic function to model the $m_{\mu\mu}$ distributions for the total background. Signal events from the ggF and VBF processes were generated with Powheg-box v2 [19] at next-to-leading order (NLO) in quantum chromodynamics (QCD) using the CT10 [20] parton distribution function (PDF) set and Pythia8 [21] for parton showering and hadronization. Pythia8 was also used to model $H \rightarrow \mu\mu$ events produced in association with a W or Z boson (VH). The hadronization and underlying-event parameters were set according to the AZNLO tune based on the Z boson p_T distribution measurement in 7 TeV pp collisions [22]. The simulated Higgs boson p_T spectrum for the ggF process is tuned to match the HRv2 prediction [23, 24].
The signal samples are normalized to the predicted cross sections times branching ratio. The production cross sections of the Higgs boson at $\sqrt{s} = 13$ TeV are reported in Refs. [11, 25, 26]. The cross section for the ggF process is calculated at next-to-next-to-next-to-leading-order QCD [27] and NLO electroweak accuracies [28, 29]. Both the VBF and VH cross sections are computed with next-to-next-to-leading-order QCD [30] and NLO electroweak precision [31–33]. The branching ratio for the $H \rightarrow \mu\mu$ decay is calculated using HDECAY [34] at NLO in QCD.

Drell-Yan background events were generated with MadGraph5 [35] with the NNPDF23LO [36] PDF set interfaced to Pythia8. The $t\bar{t}$ and single-top quark samples were generated with Powheg-box v2 using the CT10 PDF set interfaced to Pythia6 [37] for parton showering and hadronization. The diboson processes (WW, WZ, and ZZ) were generated with Sherpa v2.1 [38] with the CT10 PDF set.

All simulated samples were processed through the full ATLAS detector simulation [39] based on Geant4 [40]. The effects arising from multiple pp collisions in the same or neighboring bunch crossings (pileup) were included in the MC simulation. Events are reweighted such that the distribution of the average number of interactions per bunch crossing matches that observed in data. Simulated events are corrected to reflect the muon momentum scale and resolution and the muon trigger and identification efficiencies measured in data.

Events are required to contain at least one reconstructed pp collision vertex candidate with at least two associated ID tracks each with $p_T > 0.4$ GeV. The vertex with the largest sum of p_T^2 of tracks is considered to be the primary vertex. Dimuon events are selected by requiring two opposite-charge muons. Muons are reconstructed by combining tracks in the ID with tracks in the MS. Candidate muons are required to satisfy the “medium” criteria defined in Ref. [41] and required to have $p_T > 15$ GeV and $|\eta| < 2.5$. Muons are matched to the primary vertex by requiring the longitudinal impact parameter z_0 to satisfy $|z_0 \sin(\theta)| < 0.5$ mm, where θ is the polar angle of the track. The significance of the transverse impact parameter d_0 calculated with respect to the measured beam line position is required to satisfy $|d_0|/\sigma(d_0) < 3$, where $\sigma(d_0)$ is the uncertainty in d_0. Furthermore, the “loose” isolation criteria described in Ref. [41] are applied to suppress muons from b-hadron decays. Jets are reconstructed using the anti-k_t algorithm [42] with a radius parameter of $R = 0.4$. Candidate jets must have $|\eta| < 4.5$, and the jet p_T must be larger than 25 (30) GeV for $|\eta| < 2.5$ (2.5 < $|\eta| < 4.5$). To suppress pileup contributions, an additional requirement using the track and vertex information inside a jet [43] is imposed on jets with $|\eta| < 2.4$ and $p_T < 60$ GeV. Top quark production is the second largest background with neutrinos and b hadrons in the final states. Jets containing b hadrons with $|\eta| < 2.5$ are identified as b-tagged jets using a multivariate b-tagging algorithm that provides a 60% efficiency and a rejection factor of more than 1000 for light-flavor jets [44]. Neutrinos escape from the detector and lead to missing transverse momentum E_T^{miss}. The E_T^{miss} is defined as the magnitude of the negative vectorial sum of the transverse momenta of the selected and calibrated physics objects (including muons and jets) and the ID tracks not associated with any physics object (soft term) [45]. To reduce the top quark contribution, events are required to have $E_T^{\text{miss}} < 80$ GeV and no b-tagged jets.

To ensure a high trigger efficiency, the leading muon must have $p_T > 27$ GeV. These criteria form the preselection, and events passing the preselection with 110 GeV < $m_{\mu\mu}$ < 160 GeV constitute the inclusive signal region. The signal efficiency is 57% (59%) for the ggF (VBF) process. The $m_{\mu\mu}$ distributions for data and MC events in the inclusive signal region are shown in Figure 1.

The VBF categories are only considered for events containing at least two jets. To optimize the selections, several kinematic variables that are sensitive to the characteristics of the VBF production are used. For jet-related variables, only the two jets with highest p_T are considered, with the leading (subleading) jet
denoted by j_1 (j_2). Among those variables, the most sensitive ones are dijet invariant mass (m_{jj}), $p_T^{\mu\mu}$, difference in pseudorapidity $\Delta\eta_{jj}$, and angular distance ΔR_{jj} between the two jets. Other variables with less discriminating power include transverse momentum of the dijet system (p_T^{jj}), E_T^{miss}, scalar p_T sum of muons and jets (S_T), p_T of the system containing two muons and one or two jets ($p_T^{\mu\mu j_1}$, $p_T^{\mu\mu j_2}$ and $p_T^{\mu\mu jj}$), rapidity difference between the dimuon system and the jets ($\Delta y_{\mu\mu, j_1}$, $\Delta y_{\mu\mu, j_2}$ and $\Delta y_{\mu\mu, jj}$), and “centrality”, defined as the difference between the dimuon rapidity and the averaged jet rapidity divided by the absolute rapidity difference between j_1 and j_2. The MC modeling of these variables for the Drell-Yan process is compared with data in the region with $76 \text{ GeV} < m_{\mu\mu} < 106 \text{ GeV}$, and no significant mismodeling is found. All these variables are combined into a multivariate discriminant, which is then trained using MC events with a boosted-decision-tree (BDT) method [46–48] to maximize the separation between the VBF signal and the total background. Events with a larger BDT score are more signal-like, while background events tend to populate the low BDT score region. Finally, events with BDT score ≥ 0.9 constitute one of the VBF categories (“VBF tight”), and the other one (“VBF loose”) is defined with $0.7 < \text{BDT score} < 0.9$.

The remaining events that are not selected for the VBF categories all enter into the ggF categories. Signal events from the ggF process tend to have a harder $p_T^{\mu\mu}$ spectrum than Drell-Yan events due to the higher initial-state QCD radiation. To take advantage of this feature, events are separated into three $p_T^{\mu\mu}$ categories: “low $p_T^{\mu\mu}$” ($p_T^{\mu\mu} \leq 15 \text{ GeV}$), “medium $p_T^{\mu\mu}$” (15 GeV $< p_T^{\mu\mu} < 50 \text{ GeV}$), and “high $p_T^{\mu\mu}$” ($p_T^{\mu\mu} \geq 50 \text{ GeV}$). Since the muon momentum resolution in the barrel region ($|\eta| \leq 1.05$) is better than that in the end cap regions (1.05 $< |\eta| < 2.7$), events in each p_T category are further divided according to the pseudorapidities of the muons. Requiring both muons to have $|\eta| \leq 1$ forms the “central” category, while the remaining events constitute the “noncentral” category.

Table 1 shows the expected signal and background event yields as well as the observed number of data events within an $m_{\mu\mu}$ interval in each category. Each chosen interval is centered at the simulated signal peak and contains 90% of the expected signal events. These numbers are provided to demonstrate the expected detection sensitivity, while in the final results, the signal and background yields are determined.
by fitting the observed $m_{\mu\mu}$ distributions.

<table>
<thead>
<tr>
<th>Category</th>
<th>S</th>
<th>B</th>
<th>S/\sqrt{B}</th>
<th>FWHM (GeV)</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central low $p_T^{\mu\mu}$</td>
<td>11</td>
<td>8000</td>
<td>0.12</td>
<td>5.6</td>
<td>7885</td>
</tr>
<tr>
<td>Noncentral low $p_T^{\mu\mu}$</td>
<td>32</td>
<td>38000</td>
<td>0.16</td>
<td>7.0</td>
<td>38777</td>
</tr>
<tr>
<td>Central medium $p_T^{\mu\mu}$</td>
<td>23</td>
<td>6400</td>
<td>0.29</td>
<td>5.7</td>
<td>6585</td>
</tr>
<tr>
<td>Noncentral medium $p_T^{\mu\mu}$</td>
<td>66</td>
<td>31000</td>
<td>0.37</td>
<td>7.1</td>
<td>31291</td>
</tr>
<tr>
<td>Central high $p_T^{\mu\mu}$</td>
<td>16</td>
<td>3300</td>
<td>0.29</td>
<td>6.3</td>
<td>3160</td>
</tr>
<tr>
<td>Noncentral high $p_T^{\mu\mu}$</td>
<td>40</td>
<td>13000</td>
<td>0.35</td>
<td>7.7</td>
<td>12829</td>
</tr>
<tr>
<td>VBF loose</td>
<td>3.4</td>
<td>260</td>
<td>0.21</td>
<td>7.6</td>
<td>274</td>
</tr>
<tr>
<td>VBF tight</td>
<td>3.4</td>
<td>78</td>
<td>0.38</td>
<td>7.5</td>
<td>79</td>
</tr>
</tbody>
</table>

Table 1: Event yields for the expected signal (S) and background (B) processes, and numbers of the observed data events in different categories. The full widths at half maximum (FWHM) of the signal $m_{\mu\mu}$ distributions are also shown. In each category, the event yields are counted within an $m_{\mu\mu}$ interval, which is centered at the simulated signal peak and contains 90% of the expected signal events. The expected signal event yields are normalized to 36.1 fb$^{-1}$. The background in each category is normalized to the observed data yield, while the relative fractions between the different processes are fixed to the SM predictions.

Analytical models are used to describe the $m_{\mu\mu}$ distributions for both the signal and background processes. To describe the Higgs boson peak with a lower-mass tail due to final-state photon radiation, the signal model is chosen as the sum of a Crystal Ball function (CB) [49] and a Gaussian function (GS):

$$P_S(m_{\mu\mu}) = f_{CB} \times \text{CB}(m_{\mu\mu}, m_{CB}, \sigma_{CB}, \alpha, n) + (1 - f_{CB}) \times \text{GS}(m_{\mu\mu}, m_{GS}, \sigma_{GS}^S),$$

where f_{CB} is the fraction of the CB contribution when each component (CB or GS) is normalized to unity. The parameters α and n define the power-law tail of the CB distribution. The parameters m_{CB}, m_{GS}, σ_{CB}, and σ_{GS}^S denote the CB mean value, GS mean value, CB width, and GS width, respectively. These parameters are determined for each signal category by fitting the signal model to the simulated $m_{\mu\mu}$ spectrum. In each category, the ggF, VBF, and VH signal shapes are obtained separately and then combined into the total signal shape according to their SM predictions.

The background model should be able to describe the steeply falling $m_{\mu\mu}$ distributions from the dominant Drell-Yan process. At the same time, it should have sufficient flexibility to absorb potential differences between data and MC simulation, and allow variations in the $m_{\mu\mu}$ spectra due to different selections and additional contributions from minor background processes. The adopted model is the sum of a Breit-Wigner function (BW) convolved with a GS, and an exponential function divided by a cubic function:

$$P_B(m_{\mu\mu}) = f \times [\text{BW}(m_{BW}, \Gamma_{BW}) \otimes \text{GS}(\sigma_{GS}^B)](m_{\mu\mu}) + (1 - f) \times e^{A \cdot m_{\mu\mu}/m_{\mu\mu}^3},$$

where f is the fraction of the BW component when each component is normalized to unity. The σ_{GS}^B parameter in each category is fixed to the corresponding average $m_{\mu\mu}$ resolution as determined from MC Drell-Yan events. For all the categories, the BW parameters are fixed to $m_{BW} = 91.2$ GeV and $\Gamma_{BW} = 2.49$ GeV [50]. The parameters f and A are unconstrained and uncorrelated between different categories.
A binned maximum-likelihood fit to the observed $m_{\mu\mu}$ distributions in the range 110–160 GeV is performed using the sum of the signal and background models (“S+B model”). The fit is done simultaneously in all the categories. In addition to the background model parameters (f and A) described earlier, the background normalization in each category is a free parameter in the fit. The product of the $H \rightarrow \mu\mu$ signal strength μ_S and the expected signal yield gives the signal normalization in each category.

The expected signal yields used in the fit are subject to experimental and theoretical uncertainties. The systematic uncertainties in the expected signal are correlated between all the categories.

The uncertainty in the combined 2015 and 2016 integrated luminosity is 3.2%, derived, following a methodology similar to that detailed in Ref. [51], from a preliminary calibration of the luminosity scale using x–y beam-separation scans performed in August 2015 and May 2016. Other sources of experimental uncertainty include the muon reconstruction and identification efficiencies, the efficiencies due to the trigger, isolation and impact parameter requirements, the muon momentum scale and resolution, the determination of the E_T^{miss} soft term, the b-tagging efficiency, the pileup modeling, as well as the jet energy scale and resolution. The total experimental uncertainty in the predicted signal yield in each ggF category is between 4% and 6%, dominated by the luminosity, muon, jet, and pileup contributions. The experimental uncertainty increases to 15% in the VBF categories, due to larger contributions from the jet energy scale and resolution uncertainties. The effects of the experimental uncertainties in the predicted signal $m_{\mu\mu}$ shapes are found to be minor and are therefore neglected in this search.

The theoretical uncertainties in the production cross section of the Higgs boson and the $H \rightarrow \mu\mu$ decay branching ratio are set according to Refs. [25, 26]. The uncertainty in the signal acceptance in the ggF categories, due to the modeling of the Higgs boson p_T spectrum, is estimated by varying the QCD scales used in the HRes program. The acceptance uncertainties of ggF signal events in the VBF categories are estimated using the method described in Ref. [15]. The uncertainties associated with the modeling of multiparton interactions are estimated by turning them off in the event generation, according to the recommendations in Ref. [11]. The uncertainty in the ggF signal prediction ranges from 15% to 25%, dominated by the uncertainties due to omitted high-order effects. The total theoretical uncertainty in the VBF signal yield in each category is typically around 5%.

Any systematic bias in the background model when describing the underlying $m_{\mu\mu}$ spectrum might result in spurious signal events in the measurement. In each category, the number of spurious signal events (N_{spur}) is estimated by fitting the parameterized S+B model to the simulated background $m_{\mu\mu}$ distribution in the range 110–160 GeV. The $m_{\mu\mu}$ spectra are obtained from large Drell-Yan MC samples, which were produced with Powheg-box v2 [19] and MadGraph5 [35] for the ggF and VBF categories, respectively, and correspond to an equivalent integrated luminosity of about 5 ab$^{-1}$. Values of N_{spur} are derived for three nearby Higgs boson masses (120, 125, and 130 GeV), and from these the largest value between the yields and their statistical uncertainties is taken as the N_{spur} value for a certain category. A detailed discussion about how N_{spur} is used in the fitting procedure is given in Ref. [52]. The background modeling uncertainty is treated as uncorrelated among all the categories. This uncertainty varies from 8% to 50% of the statistical uncertainties of the background, depending on the selection category. The impact of the background mismodeling on the expected upper limit on the signal strength is about 2%.

The observed $m_{\mu\mu}$ spectrum is compared to the background-only fit in Figure 2 for the VBF tight category. The S+B model is fitted to the observed $m_{\mu\mu}$ spectra in eight signal categories simultaneously, and the measured overall signal strength is $\mu_S = -0.1 \pm 1.5$. An upper limit on μ_S is computed using a modified frequentist CL$_S$ method [53, 54] with the profile-likelihood-ratio test statistic [53]. The observed (expected) upper limit on μ_S at the 95% C.L. is found to be 3.0 (3.1). This limit is driven by the data statistical
uncertainty, while the impact of the systematic uncertainties is found to be 2.2%. When combined with the ATLAS Run 1 data, the observed (expected) upper limit is 2.8 (2.9) at the 95% C.L.. The corresponding measured signal strength is $\mu_S = -0.1 \pm 1.4$. The theoretical and experimental uncertainties in the expected signal and the background modeling uncertainty are correlated in the combination.

To conclude, a search for the dimuon decay of the Higgs boson is performed using 36.1 fb$^{-1}$ of data collected with the ATLAS detector in pp collisions at $\sqrt{s} = 13$ TeV at the LHC. No significant excess is observed in data, and an upper limit is set on the signal strength.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne et Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF;
BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [55].

References

[18] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upwards. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z axis. The pseudorapidity is defined in terms of the polar angle θ as η = −ln tan(θ/2). Angular distance is measured in units of ∆R = √((Δη)^2 + (Δφ)^2).

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany NY, United States of America
3 Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7 Department of Physics, University of Arizona, Tucson AZ, United States of America
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
9 Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Department of Physics, The University of Texas at Austin, Austin TX, United States of America
12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
14 Institute of Physics, University of Belgrade, Belgrade, Serbia
15 Department for Physics and Technology, University of Bergen, Bergen, Norway
16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
17 Department of Physics, Humboldt University, Berlin, Germany
18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
19 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
20 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (c) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; (d) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
21 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
22 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
23 Physikalisches Institut, University of Bonn, Bonn, Germany
24 Department of Physics, Boston University, Boston MA, United States of America
25 Department of Physics, Brandeis University, Waltham MA, United States of America
26 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
27 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
28 (a) Transilvania University of Brasov, Brasov; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c) Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; (d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (e) University Politehnica Bucharest, Bucharest; (f) West University in Timisoara, Timisoara, Romania
29 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
30 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
31 Department of Physics, Carleton University, Ottawa ON, Canada
32 CERN, Geneva, Switzerland
33 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
Department of Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Physics, Nanjing University, Jiangsu; (c) Physics Department, Tsinghua University, Beijing 100084, China

Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui; (b) School of Physics, Shandong University, Shandong; (c) Department of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai(also at PKU-CHEP), China

Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui; (b) School of Physics, Shandong University, Shandong; (c) Department of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai(also at PKU-CHEP), China

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Physics, Nanjing University, Jiangsu; (c) Physics Department, Tsinghua University, Beijing 100084, China

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland

Physics Department, Southern Methodist University, Dallas TX, United States of America

Physics Department, University of Texas at Dallas, Richardson TX, United States of America

DESY, Hamburg and Zeuthen, Germany

Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany

Department of Physics, Duke University, Durham NC, United States of America

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

INFN e Laboratori Nazionali di Frascati, Frascati, Italy

Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany

Department of Physics, University of Amsterdam, Amsterdam, Netherlands

Department of Physics, University of Leiden, Leiden, Netherlands

Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany

Fakultät für Physik, Ruhr-Universität Bochum, Bochum, Germany

Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Department of Physics, National Tsing Hua University, Taiwan, Taiwan

Department of Physics, Indiana University, Bloomington IN, United States of America
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa City IA, United States of America
Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Louisiana Tech University, Ruston LA, United States of America
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, United States of America
Department of Physics, McGill University, Montreal QC, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
INFN Sezione di Milano; Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Republic of Belarus
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
National Research Nuclear University MEPhI, Moscow, Russia
D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
105 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
106 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
107 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
108 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
109 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
110 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
111 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
112 Department of Physics, New York University, New York NY, United States of America
113 Ohio State University, Columbus OH, United States of America
114 Faculty of Science, Okayama University, Okayama, Japan
115 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
116 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
117 Palacký University, RCPTM, Olomouc, Czech Republic
118 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
119 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
120 Graduate School of Science, Osaka University, Osaka, Japan
121 Department of Physics, University of Oslo, Oslo, Norway
122 Department of Physics, Oxford University, Oxford, United Kingdom
123 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
124 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
125 National Research Centre "Kurchatov Institute" B.P.Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
126 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
127 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
128 (a) Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa; (b) Faculdade de Ciências, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de Física da Universidade da Lisboa, Lisboa; (e) Departamento de Física, Universidade do Minho, Braga; (f) Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada; (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
129 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
130 Czech Technical University in Prague, Praha, Czech Republic
131 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
132 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia
133 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
134 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
135 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
136 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
137 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucleaires,
Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V, Rabat, Maroc

138 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies alternatives), Gif-sur-Yvette, France

139 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America

140 Department of Physics, University of Washington, Seattle WA, United States of America

141 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

142 Department of Physics, Shinshu University, Nagano, Japan

143 Department Physik, Universität Siegen, Siegen, Germany

144 Department of Physics, Simon Fraser University, Burnaby BC, Canada

145 SLAC National Accelerator Laboratory, Stanford CA, United States of America

146 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

147 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

148 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden

149 Physics Department, Royal Institute of Technology, Stockholm, Sweden

150 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

151 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

152 School of Physics, University of Sydney, Sydney, Australia

153 Institute of Physics, Academia Sinica, Taipei, Taiwan

154 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

155 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

156 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

157 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

158 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

159 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

160 Tomsk State University, Tomsk, Russia

161 Department of Physics, University of Toronto, Toronto ON, Canada

162 (a) INFN-TIFPA; (b) University of Trento, Trento, Italy

163 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada

164 Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan

165 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America

166 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

167 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

168 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Department of Physics, University of Illinois, Urbana IL, United States of America
Instituto de Fisica Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Spain
Department of Physics, University of British Columbia, Vancouver BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
Department of Physics, University of Warwick, Coventry, United Kingdom
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison WI, United States of America
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven CT, United States of America
Yerevan Physics Institute, Yerevan, Armenia
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
\(^a\) Also at Department of Physics, King’s College London, London, United Kingdom
\(^b\) Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
\(^c\) Also at Novosibirsk State University, Novosibirsk, Russia
\(^d\) Also at TRIUMF, Vancouver BC, Canada
\(^e\) Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, United States of America
\(^f\) Also at Physics Department, An-Najah National University, Nablus, Palestine
\(^g\) Also at Department of Physics, California State University, Fresno CA, United States of America
\(^h\) Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
\(^i\) Also at II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
\(^j\) Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain
\(^k\) Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal
\(^l\) Also at Tomsk State University, Tomsk, Russia
\(^m\) Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China
\(^n\) Also at Universita di Napoli Parthenope, Napoli, Italy
\(^o\) Also at Institute of Particle Physics (IPP), Canada
\(^p\) Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
\(^q\) Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
\(^r\) Also at Borough of Manhattan Community College, City University of New York, New York City, United States of America
\(^s\) Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece
\(^t\) Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa
\(^u\) Also at Louisiana Tech University, Ruston LA, United States of America
\(^v\) Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
\(^w\) Also at Graduate School of Science, Osaka University, Osaka, Japan
\(^x\) Also at Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
\(^y\) Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
\(^z\) Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America
\(^aa\) Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
Also at CERN, Geneva, Switzerland
Also at Georgian Technical University (GTU), Tbilisi, Georgia
Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
Also at Manhattan College, New York NY, United States of America
Also at Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Also at The City College of New York, New York NY, United States of America
Also at School of Physics, Shandong University, Shandong, China
Also at Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Portugal
Also at Department of Physics, California State University, Sacramento CA, United States of America
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
Also at Departement de Physique Nucleaire et Corpusculaire, Université de Genève, Geneva, Switzerland
Also at Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
Also at School of Physics, Sun Yat-sen University, Guangzhou, China
Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria
Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
Also at National Research Nuclear University MEPhI, Moscow, Russia
Also at Department of Physics, Stanford University, Stanford CA, United States of America
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
Also at Giresun University, Faculty of Engineering, Turkey
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Also at Department of Physics, Nanjing University, Jiangsu, China
Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
* Deceased