Searches for di-boson resonances in ATLAS

Alexander Oh
University of Manchester
on behalf of the ATLAS Collaboration
Theoretical Framework

- **Heavy Vector Triplet**
 - arXiv:1402.4431v2
 - Effective Lagrangian with additional fields $V^{+,0,-}$.
 - Can tune mass, couplings to fermions and bosons.
 - Two benchmark scenarios
 - **A**: extended gauge symmetry
 - **B**: minimal composite higgs model
Theoretical Framework

- “bulk” RS graviton with warped extra dimension
- Extension of KK graviton in RS1 framework with SM particles extending into the “bulk”.
- Couplings to light fermions suppressed.
- gg fusion dominant production channel.
- High BR of $G^* \rightarrow VV$.
Di-boson channels

- Di-boson searches in ATLAS
 - $V V \rightarrow q q q q$, $W V \rightarrow l v q q$, $Z V \rightarrow l l q q$, $v v q q$
 - $W Z \rightarrow l v l l$, $Z Z \rightarrow l l l l$
 - $V H \rightarrow q q b b$, $l v b b$, $v v b b$
 - $H H \rightarrow b b b b, b b \gamma \gamma, \gamma \gamma l v j j$
 - $Z \gamma \rightarrow l l \gamma$, $q q \gamma$
 - $\gamma \gamma$
 - $H' \rightarrow W W \rightarrow l v l v$
 - $H' \rightarrow Z Z \rightarrow l l l l$

Focus on latest 2015+2016 data-set analyses!
Techniques

- Search for **narrow** resonances
 - Look for peak in invariant mass spectrum over a smooth background.
 - Experimental mass resolution typically few percent for hadronic decays.
 - Use test statistics for hypothesis testing and derive limits on production cross section times branching ratio.

- **Final states**
 - semi-leptonic and hadronic.
 - High BR and acceptable mass resolution.
 - Fully leptonic
 - High mass resolution.
Techniques

- Boosted hadronically decaying bosons.
 - Large R jets

- Boosted leptonically decaying bosons.
 - Isolation cone variations.
 - Di-lepton isolation.

ATLAS Simulation
- $gg \rightarrow X \rightarrow Z\gamma$
- $\sqrt{s}=13$ TeV
- $m_X=200$ GeV
- $m_X=300$ GeV
- $m_X=500$ GeV
- $m_X=1000$ GeV
- $m_X=1500$ GeV
- $m_X=2000$ GeV

Alexander Oh, LHCP 2017
Techniques

Large R jet grooming:

Improve mass resolution by suppressing soft contributions from pile-up underlying event.

(D. Krohn, J. Thaler, L. Wang)

- uses k_t algorithm to create subjets of size R_{Sub} from the constituents of the large-R jet:
 any subjets failing $p_T^{i} / p_T^{jet} < f_{cut}$ are removed

Tuned parameters: f_{cut} and R_{Sub}

- Recombine jet constituents with C/A or kt while vetoing wide angle (R_{cut}) and softer (z_{cut}) constituents. Does not recreate subjets but prunes at each point in jet reconstruction

Tuned parameters: R_{cut} and z_{cut}

Emily Thompson, BOOST2012
Techniques

- **W/Z boson tagging** for merged events
 - Require mass
 - Consistent with Z or W within ±15 GeV).
 - [H->qqbb] p_T dependent window, masss computed from calo and tracking information.
 - “D2” substructure variable consistent with 2 prong decay.

- **Higgs boson tagging**
 - Use anti-kT R=0.2 track jets and b-tagging.
VV: qqqq

- VV searches in hadronic final state, \(L=15.5 \text{ fb}^{-1} \).
 - Only merged regime, both hadronically decaying V’s reconstructed as large-R jet.
 - Boson tagged large R-jets.
 - QCD rejection
 - Number of tracks associated
 \(N_{\text{trk}} < 30 \).
 - \(|DY_{JJ}| < 1.2 \)
 - \((P_{T,1} - P_{T,2}) / (P_{T,1} + P_{T,2}) < 0.15 \)
- Main background QCD
 - Data driven
 - Double polynomial for shape
 - Validation in sidebands (jet mass)
VV: qqqq

- Tested WW, WZ and ZZ signal regions.
- No significant excess found.
- Largest deviation 1.9 σ local in HVT W' to WZ hypothesis with $m(W')=1.9\text{TeV}$.
- 95% CL limits set:
 - $[1.2\text{ TeV}, 1.9\text{ TeV}]$ W', $g_\nu=1$
 - 3.0 TeV W', $g_\nu=3$
 - 1.8 TeV Z', $g_\nu=1$
 - 1.9 TeV Z', $g_\nu=3$
VH: qqbb

- **V-> qq, H-> bb** final state, **36.1 fb⁻¹**.
 - Large branching ratio but high QCD background.
 - Complementary to semi-leptonic channels.
 - Sensitive to highest mass region (low background).

- **Only merged regime**
 - Require two large-R jets, tagging H (higher mass) and V (lower mass) in combined tagging algorithm.
 - “Combined jet mass” from calorimetric and track assisted measurements to improve resolution.
VH: qqbb

- **Main Background QCD**
 - Data driven with side-band sample
 - 0 b-tag, reweighted for kinematic differences.
 - Normalization fixed with H-jet sideband ($145 \text{ GeV} < m(H_{\text{jet}}) < 200 \text{ GeV}$).
 - Modeling checked with validation region.

- Sub-leading backgrounds $t\bar{t}$, $V+$jets.
VH: qqbb

- Largest deviation in ZH channel
 - local 3.3σ, global 2.2σ
 - $M(JJ) \sim 3.0$ TeV

<table>
<thead>
<tr>
<th>95% CL exclusion</th>
<th>M_{WH} [GeV]</th>
<th>M_{ZH} [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVT Model A ($g_v=1$)</td>
<td>1100-2400</td>
<td>1100-1480; 1700-2350</td>
</tr>
<tr>
<td>HVT Model B ($g_v=3$)</td>
<td>1100-2500</td>
<td>1100-2600</td>
</tr>
</tbody>
</table>
H → WW → ℓννv, 13.2 fb⁻¹.
- ggF and VBF categories
- eνμν final state to suppress backgrounds from DY.
- Discriminating variable transverse mass m_T:

\[m_T = \sqrt{(E_T^{ℓν} + E_T^{miss})^2 - p_T^{ℓν} + E_T^{miss}} \]

- Signal regions
 - ggF
 - VBF 1j, 2j

- Background
 - Dominant WW and top backgrounds.
 - Use control region to constrain normalization.

- No significant excess.
 - Limits for narrow, and 5%, 10%, 15% width models.
H ZZ

- H -> ZZ -> llll, 14.8 fb⁻¹.
 - e and mu final state.
 - Z mass constraint on both Z candidates to improve mass resolution by 15%.

- Signal regions
 - inclusive
 - ggF
 - VBF

- Background
 - Dominant ZZ* from MC
 - Z+jets and tt from data driven methods.

- No significant excess.
 - Limits for narrow, and 1%, 10%, 15% width models.
$Z\gamma: \gamma\gamma$

- Full 2015+2016 data set of 36.1 fb$^{-1}$
 - Update to previous result with 13.3 fb$^{-1}$ (ATLAS–CONF–2016–044)

- **Selection**
 - Z candidate $|M(Z) - m(\ell\ell)| < 15$GeV, ee and $\mu\mu$ final states.
 - Apply kinematic fit to improve the mass resolution.
 - γ candidate “tight” id and isolation, including conversion.
 - Select γ with highest p_T.
 - Categorize events into ee and $\mu\mu$.
 - Experimental Signal resolution ~1%.
$Z\gamma: \Pi\gamma$

- Signal:
 - Modeled with double-sided Crystal Ball function.
 - Efficiency 20%-50% depending on mass and signal model.
- Dominant background $Z+\gamma$ and $Z+jets$.
- Composition of background from data.
- Background shape modeled analytically.
Zγ: llγ

- No significant excess found.
- Largest deviation 2.7σ local, 0.9σ global at $m(Z\gamma) = 960\text{GeV}$.
- Dominated by muon channel.
- Set limits for spin-0 and spin-2 resonances.
Wrap-up

- Run-2 results with full 2015+2016 data sample are getting ready.
- Mass reach profits from higher statistics.
- Advance tagging technics help to effectively reject QCD background.
- No significant excess observed in most channels.
- Waiting for more data!

<table>
<thead>
<tr>
<th>Channel</th>
<th>Lumi</th>
<th>Documentation</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>VV: qqqq</td>
<td>15.5</td>
<td>ATLAS-CONF-2016-055</td>
<td>03.08.16</td>
</tr>
<tr>
<td>HV->qqbb</td>
<td>36</td>
<td>ATLAS-CONF-2017-018</td>
<td>21.03.17</td>
</tr>
<tr>
<td>h->zz -> llll</td>
<td>14.8</td>
<td>ATLAS-CONF-2016-079</td>
<td>04.08.16</td>
</tr>
<tr>
<td>h->ww->lvlv</td>
<td>13.2</td>
<td>ATLAS-CONF-2016-074</td>
<td>04.08.16</td>
</tr>
<tr>
<td>h->Zgam</td>
<td>36.1</td>
<td>HIGG-2016-14 (plots)</td>
<td>14.05.17</td>
</tr>
</tbody>
</table>