A penetrating look at Quark-Gluon Plasma physics
Probing the QCD phase transition with heavy quarkonia

Carlos Lourenço, on behalf of the CMS collaboration
CERN, CH-1211 Geneva 23, Switzerland

A small fraction of the results recently released by CMS in the field of quarkonium production in pp and Pb-Pb collisions are briefly presented.

The theory and experimental studies of quarkonium production and suppression as a laboratory to understand the QCD phase transition were triggered by Matsui and Satz1, just before the first heavy-ion collisions at the CERN SPS took place. Today we know that the statement “J/ψ suppression in nuclear collisions should provide an unambiguous signature of QGP formation” was somewhat naive, but the basic idea has survived: screening the QCD potential “dissolves” the charmonium and bottomonium bound states; and quarkonium states of different binding energies should dissolve at successive thresholds in the temperature of the medium, leading to a sequential suppression pattern2 that should work as a “thermometer” of the QCD matter. The following years much more has been understood regarding quarkonium production as a laboratory to understand hadron formation and QCD confinement (for recent reviews, see Refs.3,4 and references therein). But the mechanisms behind quarkonium production remain a challenge, even in the “elementary” case of pp collisions, the non-perturbative QCD aspects preventing a clear understanding of the strong interactions binding the quarks into hadrons. Non-relativistic QCD (NRQCD)5 is seemingly our best path towards efficient progress in this area of QCD phenomenology. In this framework, quarkonia are produced from the binding of quark-antiquark pairs created with a variety of quantum numbers, in colour singlet or octet configurations. These terms are characterized by significantly different kinematic dependences and polarizations, determined by the short-distance cross sections (SDCs), presently calculated at next-to-leading order (NLO). They contribute with probabilities proportional to long distance matrix elements (LDMEs), extracted from fits to experimental data6,7,8,9. Traditionally, these “global fits” only consider the measured cross sections and then predict that quarkonia produced with high transverse momentum should be transversely polarized, in clear conflict with measurements, a situation dubbed “the quarkonium polarization puzzle”. The reluctance in using polarization data in the fits reflects the observation that most of the pre-LHC measurements are incomplete and ambiguous10. Indeed, polarization measurements are very complex and
require exceptional care in the corresponding data analyses. The experimental situation has dramatically improved with the availability of high quality polarization measurements, using much-improved analysis approaches11,12 by CMS for the five S-wave quarkonium states13,14 and by LHCb for the charmonia15,16. These results are at the basis of a new understanding of quarkonium production17, dominated by the unpolarized $^{1}S_{0}^{(8)}$ pre-resonance octet term.

The CMS experiment18 has an excellent performance for studies of quarkonium production in the dimuon decay channel, both in pp and in Pb-Pb collisions, mostly thanks to its very large and high-granularity silicon tracker, very strong magnetic field, broad acceptance in absolute rapidity $|y|$ and in transverse momentum p_T, flexible trigger capabilities, and powerful data acquisition system. It is worth mentioning the good vertexing capabilities, allowing for a reliable subtraction of charmonium events resulting from B meson decays, so that the measurements always refer to “prompt” production. However, except for the $\psi(2S)$ case, all measured S-wave states add to the directly produced mesons a contribution from feed-down decays of heavier quarkonia, sometimes through several cascade steps. While the J/ψ peak is always well above the underlying dimuon continuum, the $\psi(2S)$ peak is harder to see, especially at forward rapidity (worse dimuon mass resolution) and low p_T (larger background)19. The $\Upsilon(1S)$ peak is also easy to identify, with a good signal-to-background ratio, as shown in Fig. 1-left. The $\Upsilon(2S)$ resonance, well visible in the pp data, is much harder to see in the Pb-Pb data, clearly affected by a significant suppression; and there are no signs of $\Upsilon(3S)$ production in Pb-Pb collisions, in the data samples collected so far by CMS20. It is worth noting that the nucleon-nucleon integrated luminosity of the existing Pb-Pb samples (351 μb-1 scaled by 208 squared) is not negligible, being more than half of that of the pp sample (25.8 pb-1). Figure 1-right shows the $\Upsilon(2S)$ over $\Upsilon(1S)$ “double ratio”, comparing Pb-Pb to pp production in nine Pb-Pb centrality bins, including three bins in the “peripheral region” (50 to 100% centrality percentile). It is remarkable that this suppression pattern is essentially flat, at around 0.35, and the drop from pp to Pb-Pb occurs at very peripheral collisions. Also the $\psi(2S)$ is significantly more suppressed than the J/ψ, even in the most peripheral Pb-Pb collisions probed by CMS, for $|y| < 1.6$ and $p_T > 6.5$ GeV. Finally, the $\Upsilon(3S)$ over $\Upsilon(1S)$ double ratio is not significantly higher than zero, even in the most peripheral bin available to CMS with the current level of Pb-Pb integrated luminosity.

![Figure 1](https://example.com/figure1.png)

Figure 1 – Left: Dimuon mass distribution in the Υ mass region, comparing the Pb-Pb data with the shape extrapolated from pp data, to illustrate the magnitude of the suppression affecting the excited states. Right: $\Upsilon(2S)$ over $\Upsilon(1S)$ and $\psi(2S)$ over J/ψ double ratios as a function of Pb-Pb centrality.

The CMS collaboration has also reported results on “normalized single ratios”, denoted by R_{AA}, where the Pb-Pb and pp yields are directly compared for individual quarkonia21,22,23. Figure 2-left shows the measured Pb-Pb to pp suppression levels, from data collected at 2.76 TeV,
for the five S-wave quarkonia, as a function of their binding energy. The most loosely bound state and the only one not affected by feed-down decays, the $\psi(2S)$, shows a very strong suppression. To appreciate how the suppression fades away as the binding energy increases, one would need to account for the feed-down contributions of the other onia states: maybe none of the directly produced $\Upsilon(1S)$ are suppressed and we are seeing a strong suppression of the heavier (S- and P-wave) bottomonia.

A clear and unambiguous understanding of quarkonium suppression also needs to account for polarization effects: we could observe quarkonium suppression simply because the mesons would be produced more transversely polarized in Pb-Pb than in pp, given that the acceptances are corrected assuming identical polarizations for all collision systems. So far, no measurements exist of quarkonium polarization in Pb-Pb collisions. CMS took a first step in that direction by measuring how the polarizations of the $\Upsilon(nS)$ states change with the number of charged particles, N_{ch}, produced in pp collisions. The measurements do not show significant variations of λ_θ with N_{ch}, but the large $\Upsilon(2S)$ and $\Upsilon(3S)$ uncertainties preclude definite statements in these cases and the interpretation of the result for the $\Upsilon(1S)$ state, shown in Fig. 2-right, is blurred by potential effects of the P-wave feed-down contributions, presently impossible to evaluate for lack of information regarding the $\chi_b(nP)$ polarizations and their feed-down fractions. The curves in the figure illustrate how the inclusive polarization might change as a function of N_{ch} if the directly-produced component (of polarization λ_0) is complemented by a feed-down component (of polarization λ_1) that contributes with a fraction f, decreasing linearly with N_{ch} from 50% to 0 in the $0 < N_{ch} < 60$ range. The six curves correspond to different assumptions for λ_0 and λ_1, reported in the legends, with λ_1 representing an effective average of the χ_b1 and χ_b2 polarizations (the χ_b and χ_b2 values must verify $\lambda_\theta > -1/3$ and $\lambda_\theta > -3/5$, respectively). In these scenarios the feed-down fraction is assumed to become negligible at high N_{ch}, where the inclusive λ_θ tends to the direct λ_0 value. At low N_{ch}, where the feed-down contribution is, hypothetically, the highest, the inclusive λ_θ parameter crucially depends on the assumed χ_b polarization.

In conclusion, very interesting measurements have been made at the LHC, in particular by the CMS experiment, in the field of quarkonium production, both with pp and Pb-Pb data samples. Future results, especially involving the P-wave states (polarizations, feed-down fractions), are eagerly awaited. The improved understanding of quarkonium production in pp collisions will certainly help using quarkonia as probes of the QCD phase transition in Pb-Pb data.
References