Higgs Yukawa Couplings
Latest results on the $H \rightarrow bb$ and $ttH/t\bar{H}$ channels

Georges Aad – For the ATLAS and CMS Collaboration
CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

5th Large Hadron Collider Physics Conference
May 2017, Shanghai Jiao Tong University, Shanghai (China)
• Coupling to fermions constrained by Run 1 measurements
 • Within the “Kappa framework”
• \(H \to \tau \tau \) already observed (J. Piedra Gomez talk)
• \(H \to b \bar{b} \) and \(ttH \) not yet observed
 • However indirect constraints are available (model dependent)

ATLAS+CMS Run 1

<table>
<thead>
<tr>
<th>Significance</th>
<th>Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H \to \tau \tau)</td>
<td>5.0(\sigma)</td>
<td>5.5(\sigma)</td>
</tr>
<tr>
<td>(H \to b \bar{b})</td>
<td>3.7(\sigma)</td>
<td>2.6(\sigma)</td>
</tr>
<tr>
<td>(ttH)</td>
<td>2.0(\sigma)</td>
<td>4.4(\sigma)</td>
</tr>
</tbody>
</table>

\[\kappa_i^2 = \frac{\Gamma_i}{\Gamma_{SM}} \]

\(\kappa_\tau \)
No BSM: \(\mathcal{O}(15\%) \)
BSM in loops: \(\mathcal{O}(15\%) \)

\(\kappa_b \)
No BSM: \(\mathcal{O}(25\%) \)
BSM in loops: \(\mathcal{O}(20–30\%) \)

\(\kappa_\ell \)
No BSM: \(\mathcal{O}(15\%) \)
BSM in loops: \(\mathcal{O}(30\%) \)
ttH channel

- Direct way to probe the top Yukawa coupling
 - Complementary to loop-induced sensitivity in $gg \rightarrow H$ and $H \rightarrow \gamma\gamma$

- Small production cross section and complex final state
 - Exploit various final states
 - Extensive use of MVA techniques

Increase $\sigma \times \text{BR}$

Increase purity
ttH(bb) Strategy

- **Similar ATLAS and CMS analyses**
 - Basic `ttbar` selection *(One or two leptons)*
 - Then require additional jets (b-jets)

- **Split according to the number of (b)jets**
 - Exploit regions with different background composition
 - Low signal purity (Max: 3%-6%)

- **Advanced MVA techniques in signal enriched regions**
 - Signal depleted regions to control backgrounds

Dilepton Regions in Backup

Georges Aad - LHCP 2017
ttH(bb) MVAs

- **ATLAS: 2 BDTs**
 - Reconstruction BDT to find “correct” jets assignment
 - Classification BDT to separate signal and backgrounds
 - Includes reconstruction variables

- **CMS: BDT and MEM**
 - Classification BDT to further split events into two regions
 - MEM discriminant in the fit
Both ATLAS and CMS increased analysis sensitivity with respect to run 1

However both analyses do not reach the 2σ level with $\sim 13\, fb^{-1}$
- Dominated by systematic uncertainties

Main challenge: control of $tt+bb$ background

But improvements are on the way
ttH (H→WW*, ZZ*, ττ)

- Split according to the number of leptons (e, μ) and τh in the final state
- ATLAS: Counting experiment in 6 categories
- CMS: Split further and make extensive use of MVAs techniques
- Excluding final state compatible with H→4l (dedicated analysis)

CMS categories

\[
\begin{array}{c|c|c|c|c}
\mu^±\mu^± & \mu^±e^± & e^±e^± & 3\ell & 4\ell \\
\hline
b\, tight & b\, tight & b\, loose & b\, tight & b\, loose \\
\end{array}
\]

1\ell 2\tau_h

\[
\begin{array}{c|c}
\ell^±\ell^±\tau_h & 3\ell 1\tau_h \\
\hline
Jet candidates from W decay & No jet candidates from W decay \\
\end{array}
\]

CMS PAS HIG-17-004

ATLAS-PAS HIG-17-003
ttH 2ℓss MVAs (example)

- Partial event “reconstruction” using BDTs
 - Identify jets from hadronic top decay and Higgs decay
- Train 2 kinematic BDTs: ttH vs ttbar and ttH vs ttV
- Map 2D into 1D (add bins with similar S/B)

2ℓss, ttH vs ttbar: Includes hadronic top tagger

2ℓss, ttH vs ttW/Z: Include tagging of jets from Higgs
ttH Multilepton Results

- 3σ evidence reached with CMS multi-lepton analysis
 - Using 35.9 fb⁻¹
- Main challenge: control backgrounds from lepton and τₜₜ misidentification
 - Also control ttV backgrounds

<table>
<thead>
<tr>
<th></th>
<th>Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS (13.2fb⁻¹)</td>
<td>1.5σ</td>
<td>2.2σ</td>
</tr>
<tr>
<td>CMS (35.9 fb⁻¹)*</td>
<td>2.5σ</td>
<td>3.3σ</td>
</tr>
</tbody>
</table>

*w/o τₜₜ channels

σₜₜ dominated by systematic uncertainties
ttH (H→γγ, 4l)

- Ultra pure channels with very low yields
 - Dominated by the statistical uncertainties for now
- Exploit narrow resonance on top of continuum background

<table>
<thead>
<tr>
<th></th>
<th>Signal strength relative to SM prediction (μ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ttH (H→γγ)</td>
<td>ATLAS (13.3 fb$^{-1}$)</td>
</tr>
<tr>
<td></td>
<td>CONF-2016-068</td>
</tr>
<tr>
<td></td>
<td>$-0.3^{+1.2}_{-1.0}$</td>
</tr>
<tr>
<td>ttH (H→4l)</td>
<td>CMS (12.9 fb$^{-1}$)</td>
</tr>
<tr>
<td></td>
<td>PAS HIG-16-020</td>
</tr>
<tr>
<td></td>
<td>$1.9^{+1.5}_{-1.2}$</td>
</tr>
<tr>
<td>ttH (H→4l)</td>
<td>CMS (35.9 fb$^{-1}$)</td>
</tr>
<tr>
<td></td>
<td>PAS HIG-16-041</td>
</tr>
<tr>
<td></td>
<td>$0.0^{+1.2}_{-0.0}$</td>
</tr>
</tbody>
</table>

ATLAS-CONF-2016-067

- Data
- Background Fit
- Signal + Background Fit
- SM Signal + Background

CMS PAS HIG-16-020

- $\tau_s = 13$ TeV, 13.3 fb$^{-1}$
- $H\rightarrow\gamma\gamma$, $m_H = 125.09$ GeV

CMS PAS HIG-16-041

- 35.9 fb$^{-1}$ (13 TeV)
- ttH hadronic

Georges Aad - LHCP 2017

2017-05-15
tbHj and tWHb

Destructive interference in SM

Significant cross section increase in Inverted Top Coupling scenario (ITC) $\kappa_t = -\kappa_v = -1$

H→bb

Lepton + (b)jets final state

Two sub-samples: 3 or 4 b-tags

BDTs to find best jet assignment
 Two assumptions: tbHj or ttbar

Final classification BDT
 Exploits reconstructed properties

H→WW*, ZZ*, ττ

Multi-lepton + (b)jets final state

3 sub-samples: $\mu^+\mu^+, \mu^+e^+, 3\ell$

2 BDTs to discriminate tbHj vs ttV or ttbar
 Mapped to 1D Discriminant

Georges Aad - LHCP 2017
tbHj and tWHb (Results)

- Run 1 sensitivity exceeded
- SM analysis clearly limited by statistical uncertainties
 - But powerful for some BSM scenarios

Limit on cross section @95% C.L. ($\kappa_V = 1.0$)

<table>
<thead>
<tr>
<th>Process</th>
<th>κ_t</th>
<th>σ^{SM}_{tH}</th>
<th>σ^{ITC}_{tH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$tH(H\rightarrow bb)$</td>
<td>+1.0</td>
<td>$113.7 \times \sigma^{SM}_{tH}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>−1.0</td>
<td>$6.0 \times \sigma^{ITC}_{tH}$</td>
<td></td>
</tr>
<tr>
<td>$tH+ttH(H\rightarrow ZZ,WW,\tau\tau)$</td>
<td>+1.0</td>
<td>$3.1 \times \sigma^{SM}_{tH+ttH}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>−1.0</td>
<td>$1.4 \times \sigma^{ITC}_{tH+ttH}$</td>
<td></td>
</tr>
</tbody>
</table>

Limit as function of κ_t ($\kappa_V = 1.0$)

Limit as function of κ_t/κ_V

Georges Aad · LHCP 2017
H → bb

- Despite having the largest BR, H → bb is not yet observed
 - 2.6σ LHC Run 1, 3.3σ Tevatron

- Associated or VBF production to suppress overwhelming multi-jet production (trigger)

- 3 analyses in run 2
 - Almost the same diagram
 - Different trigger strategy and final state

VH (H → bb)
ATLAS-CONF-2016-091

VBF (H → bb)
CMS-PAS-HIG-16-003

VBF,γ (H → bb)
ATLAS-CONF-2016-063
- Split into categories depending on N_{lep} and N_{jets}
- Require exactly 2 b-tags
- Cut on vector boson candidate p_T to reduce multi-jet contribution

<table>
<thead>
<tr>
<th></th>
<th>0 lepton</th>
<th>1 lepton</th>
<th>2 leptons</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 jets</td>
<td>$p_T > 150\text{GeV}$</td>
<td>$p_T > 150\text{GeV}$</td>
<td>$p_T < 150\text{GeV}$</td>
</tr>
<tr>
<td>3 jets</td>
<td>$p_T > 150\text{GeV}$</td>
<td>$p_T > 150\text{GeV}$</td>
<td>$p_T > 150\text{GeV}$</td>
</tr>
</tbody>
</table>

Main bkg

- $Z+bb$, $W+bb$, $ttbar$
VH, H → bb

- Split into categories depending on N_{lep} and N_{jets}
- Require exactly 2 b-tags
- Cut on vector boson candidate p_T to reduce multi-jet contribution

<table>
<thead>
<tr>
<th></th>
<th>0 lepton</th>
<th>1 lepton</th>
<th>2 leptons</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 jets</td>
<td>$p_T^V > 150 \text{GeV}$</td>
<td>$p_T^V > 150 \text{GeV}$</td>
<td>$p_T^V < 150 \text{GeV}$</td>
</tr>
<tr>
<td>3 jets</td>
<td>$p_T^V > 150 \text{GeV}$</td>
<td>$p_T^V > 150 \text{GeV}$</td>
<td>$p_T^V > 150 \text{GeV}$</td>
</tr>
</tbody>
</table>

Fit BDTs in all categories

Georges Aad - LHCP 2017
Run 1 sensitivity not yet reached with 13.2 fb\(^{-1}\)
- Similar contribution from statistical and systematic uncertainties
- Main challenge: control V+bb and ttbar backgrounds
 - Also control b-tagging related systematics

ATLAS (13.2 fb\(^{-1}\))

<table>
<thead>
<tr>
<th>Significance</th>
<th>Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS</td>
<td>1.94(\sigma)</td>
<td>0.42(\sigma)</td>
</tr>
</tbody>
</table>

Run 1 ATLAS expected significance: 2.6\(\sigma\)
Similar strategies for ATLAS and CMS
- Main difference at trigger level

BDT with minimal correlation to the Higgs mass
- Categorize events in BDT bins
- Fit m(bb) in each category

Improve b-jet energy resolution
- Correct for semi-leptonic decays
- CMS: regression technique using a BDT and FSR correction

CMS Analysis
VBF topological trigger
Larger cross section but lower purity

ATLAS Analysis
Photon + VBF
topological trigger
Smaller cross section but higher purity

Categorization BDT
VBF, $H \rightarrow bb$ Results

- Search for resonant $H \rightarrow bb$ on top of non-resonant background

- Challenges
 - Improve $m(bb)$ resolution
 - Control non-resonant background

<table>
<thead>
<tr>
<th>Source</th>
<th>CMS 13TeV ($2.3 fb^{-1}$) PAS HIG-16-003</th>
<th>$-3.7^{+2.4}_{-2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBF ($H \rightarrow bb$)</td>
<td>+ CMS 8TeV ($19.8 fb^{-1}$) PAS HIG-16-003</td>
<td>$1.3^{+1.2}_{-1.1}$</td>
</tr>
<tr>
<td>VBF, γ ($H \rightarrow bb$)</td>
<td>ATLAS 13TeV ($12.6 fb^{-1}$) CONF-2016-063</td>
<td>$-3.9^{+2.8}_{-2.7}$</td>
</tr>
</tbody>
</table>
Conclusion

- Coupling to τ leptons established in run 1
- Coupling to quarks still to be established
- No deviations from SM are observed

- ttH run 2 analyses exceed run 1 sensitivity
 - CMS: Evidence from ttH(multi-lepton) with full 2015+2016 data
- Not sensitive yet to $H\rightarrow bb$

- Many analyses still updating to the full available dataset
 - Complex analyses with continuous improvements
 - Expect updates in the near future

- More details tomorrow (Higgs session)
 - C. C. Campana’s and Z. Liang’s talks
Backup
Dilepton regions
Background composition for the different regions

ATLAS

Simulation Preliminary

- $t\bar{t} + \text{light}$
- $t\bar{t} + \geq 1c$
- $t\bar{t} + \geq 1b$
- $t\bar{t} + V$
- Non-$t\bar{t}$

Background composition for the different regions

ATLAS

Simulation Preliminary

- $t\bar{t} + \text{light}$
- $t\bar{t} + \geq 1c$
- $t\bar{t} + \geq 1b$
- $t\bar{t} + V$
- Non-$t\bar{t}$

Georges Aad - LHCP 2017

2017-05-15
ttH 3ℓ BDT discriminant

- Evaluate MEM weights under ttH, ttW, ttZ hypotheses
 - Build likelihood ratio of ttV vs ttH+ttV
- MEM weight included in ttH vs ttV BDT
- Another BDT to discriminate ttH and ttbar
- Mix both BDTs
 - Adding bins with similar S/B

\[-\log \left(\frac{\sigma_{ttZ}w_{ttH} + k \cdot \sigma_{ttW}w_{ttW}}{\sigma_{ttH}w_{ttH} + \sigma_{ttZ}w_{ttZ} + k \cdot \sigma_{ttW}w_{ttW}} \right)\]
ttH, $H \rightarrow \tau\tau$ discriminants

- Split into 3 channels with leptons and τ_h in the final state
 - Following similar techniques as ttH with leptons and muons
- $2\ell ss + 1\tau_h$
 - MEM likelihood ratio with ttH vs ttZ and ttbar hypotheses
 - Further split according to the presence of two jets compatible with a W boson decay
- $1\ell + 2\tau_h$
 - BDT trained against ttbar
- $3\ell + 1\tau_h$
 - 2 BDTs: against ttV and ttbar
 - 1D bin mapping according to S/B (D_{MVA})
Prefit vs postfit

- **ttH(bb) ATLAS**
- **tt+b and tt+c normalization systematics not included in pre-fit plot**
 - Free parameters of the fit
Prefit vs postfit

- $ttH(bb)$ CMS
- Postfit reduction of systematics
 - Mostly on normalization systematics
tbHj and tWHb, H→bb

- Analysis performed in the lepton + (b)jets final state
- Split into two sub-samples: 3 b-tags and 4 b-tags
- BDTs to find best jet assignment and reconstruct the event
 - Under two assumptions: tbHj and ttbar
- Final classification BDT that exploits reconstructed properties

Destructive interference in SM

Significant cross section increase in inverted top coupling scenario

\[\kappa_t = -\kappa_v = -1 \]
Comparable sensitivity to Run 1 analysis
 - With only 2.3 fb\(^{-1}\)

SM analysis clearly limited by statistical uncertainties
 - But powerful for some BSM scenarios

Final BDT output

Limit on cross section @95% C.L.

<table>
<thead>
<tr>
<th>(\kappa_t)</th>
<th>(\kappa_v)</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1.0, 1.0</td>
<td>+1.0</td>
<td>113.7</td>
</tr>
<tr>
<td>-1.0, 1.0</td>
<td>+1.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Limit as function of \(\kappa_t\)

Georges Aad - LHCP 2017