Measurement of photon production cross sections with the ATLAS detector

Ruggero Turra
on behalf of the ATLAS Collaboration

INFN Milano

July 6th, 2017

EPS Conference
- Increase in instantaneous luminosity
- Increase $\sqrt{s} = 7, 8, 13$ TeV
- Increase in pileup: $\langle \mu \rangle = 9.1, 20.7, 23.7$
- New collisions in 2017 at 13 TeV: already 6 fb$^{-1}$

- Photon clusters reconstructed in the EM calorimeter with a sliding window
- Search for matching to tracks (electrons) and conversion vertices
- Identification based on shower shapes and hadronic leakage
Inclusive photon fiducial cross sections

<table>
<thead>
<tr>
<th>γγ, p_T > 125 GeV</th>
<th>σ = 399 ± 0.4 ± 16 pb (data) JETPHOX+MMHT2014 (NLO) (theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>γγ, p_T > 25 GeV</td>
<td>σ = 359 ± 3 ± 16 pb (data) JETPHOX (NLO) (theory)</td>
</tr>
<tr>
<td>−</td>
<td>σ = 236 ± 2 ± 13 pb (data) JETPHOX (NLO) (theory)</td>
</tr>
<tr>
<td>−</td>
<td>σ = 123 ± 1 ± 9 pb (data) JETPHOX (NLO) (theory)</td>
</tr>
<tr>
<td>γγ, ∆Rγγ > 0.4</td>
<td>σ = 16.82 ± 0.07 ± 0.75 − 0.78 pb (data) 2γNNLO + CT10 (ref. theory), Sherpa 2.2.1 (MEPS@NLO) + NNPDF 3.0 (NNLO) (theory)</td>
</tr>
<tr>
<td></td>
<td>σ = 44 ± 3.2 − 4.2 pb (data) 2γNNLO (ref. theory), DIPHOX+GAMMA2MC (NLO) (theory)</td>
</tr>
</tbody>
</table>

ATLAS Preliminary
Run 1,2 √s = 7, 8, 13 TeV

Inclusive Photon Fiducial Cross Section Measurements

Status: July 2017

ATLAS Preliminary
Run 1,2 √s = 7, 8, 13 TeV

Data

LHC pp √s = 7 TeV

LHC pp √s = 8 TeV

LHC pp √s = 13 TeV

NNLO QCD
NLO QCD

ratio to best theory
Testing pQCD with a hard colourless probe, sensitive at LO to the gluon PDF.

Cross sections as functions of E_T in four different η regions.

- Selection: $E_T > 125$ GeV, $|\eta| < 2.37$ except $1.37 < |\eta| < 1.56$, photon-ID, calo-isolation $E_{\text{iso}}^T < 4.8$ GeV + $4.2 \times 10^{-3} E_T$.

- Fiducial region: mirror of the selection.

- Background subtracted with data-driven technique.

- Compared with SHERPA and PYTHIA: good agreement.

- Compared with JETPHOX (NLO, direct + fragmentation) with different PDFs.
Inclusive photon at 13 TeV

\[\sigma = 399 \pm 13(\text{exp.}) \pm 8(\text{lumi}) \text{ pb} \quad \sigma_{\text{JETPHOX}} = 352^{+36}_{-29}(\text{scale}) \pm 3(\text{pdf}) \pm 6(\alpha_s) \pm 4(\text{non-pert}) \text{ pb} \]

- NLO predictions provide an adequate description.
- Theoretical uncertainties > experimental: NNLO pQCD corrections are needed
Angular correlations between the photon and the jets
- Probe the dynamics of the hard-scattering process
- Useful in constraining the gluon density in the proton
- **New results**: up to $E_T^\gamma \simeq 1.5$ TeV

- Same selection as for inclusive photon analysis ($E_T^\gamma > 125$ GeV)
- Jet anti-k_T ($R = 0.4$), $p_T^{\text{jet}} > 100$ GeV, $|y^{\text{jet}}| < 2.37$, $\Delta R_{\gamma,\text{jet}} > 0.8$
- Purity data-driven: $> 90\%$ everywhere

Compared to:
- LO MC: PYTHIA and SHERPA
- NLO: JETPHOX (parton level + PYTHIA corrections), SHERPA ME+PS@NLO (particle level)
- PYTHIA cannot describe p_{Tj}: large contribution from photon bremsstrahlung predicted by the tune of PYTHIA
- Both JETPHOX and SHERPA ME+PS@NLO gives good predictions.
- JETPHOX cannot describe $\Delta \phi_{\gamma j}$ due to the limitation in the number of final-state partons
 - SHERPA NLO ME 2 $\rightarrow n$ processes with $n = 4, 5$
- high-p_T^{jet}: better Sherpa LO
- Theoretical uncertainties are larger than experimental, main contribution: terms beyond NLO.
\(\gamma + 1, 2, 3 \) jets studied in 6 phase space regions. Observables:

- \(E_T^\gamma, p_T^{j1/2/3}, m_{\gamma,j1}, |\cos \theta^*|, \Delta \phi_{\gamma,j2/3}, \Delta \phi_{j1/1/2,j2/3/3}, \)
- Radiation pattern around \(\gamma \) or \(j1: \beta^\gamma, \beta^j1 \)

- Photon selection: \(E_T^\gamma > 130 \text{ GeV, } |\eta| < 2.37 \) except \(1.37 < |\eta| < 1.56 \), photon-ID, calo-isolation \(E_{\text{iso}}^j < 4.8 \text{ GeV} + 4.2 \times 10^{-3} E_T \)
- Jet selection (anti-\(k_t \) R=0.6): \(E_T^j > 50 \text{ GeV, } |y^j| < 4.4 \)

- Monte Carlo: SHERPA (LO ME \(\leq 4j + \) PS), PYTHIA
- Blackhat + SHERPA (\(\gamma + 3j \) NLO ME direct production only)
- JETPHOX (\(\gamma + 1j \) NLO ME direct and fragmentation)
Photon+jet(s) at 8 TeV

- SHERPA better than Pythia in multijet region
- Visible deviation for $E_T > 750$ GeV wrt NLO prediction in $\gamma + 2j$
Photon+jet(s) at 8 TeV

- First observation of different **QCD radiation pattern** around the photon and 1st jet require $1 < \Delta R_{\gamma j_1} < 1.5$ for β^γ, require $1 < \Delta R_{j_1 j_2} < 1.5$ for β^{j_1}.

- Enhancements in the directions towards the beams, $\beta = 0$ and π.
- Agreement with SHERPA.

ATLAS

$\sqrt{s} = 8$ TeV, 20.2 fb$^{-1}$

$pp \rightarrow \gamma + 2$ jets + X

(\frac{d\sigma}{d\beta^\gamma})/(\frac{d\sigma}{d\beta})
- Sensitive to α_s corrections
- Sensitive to QCD infrared emission
- Main background for $H \rightarrow \gamma\gamma$

Fiducial cross section and differential. Variables
- Sensitive to New Physics: $m_{\gamma\gamma}$, $|\cos(\theta^*_\eta)|$
- Sensitive to higher order and QCD IR: $p_{T,\gamma\gamma}$, $\Delta\phi_{\gamma\gamma}$
- New variables sensitive to QCD IR emissions: a_T, ϕ^*_η
Diphoton selection

- Well separated photon $\Delta R_{\gamma\gamma} > 0.4$
- $E_T^{(1)} > 40 \text{ GeV}, \ E_T^{(2)} > 30 \text{ GeV}$
- $|\eta| < 2.37$ except $1.37 < |\eta| < 1.56$
- Photon identification based on shower shapes and hadronic leakage
 - Track-isolation $p_{T}^{\text{iso}}(\Delta R = 0.2) < 2.6 \text{ GeV}$
 - Calo-isolation $E_{T}^{\text{iso}}(\Delta R = 0.4) < 6 \text{ GeV}$
- Fiducial region defined using the same values at particle level
 - $E_{T}^{\text{iso,particle}}(\Delta R = 0.4) < 11 \text{ GeV}$
- Background subtraction evaluated with two methods
- Purity around 75%
Diphoton fiducial cross section at 8 TeV

\[\sigma^{\text{fid}} = 16.8 \pm 0.8 \text{ pb} = 16.8 \pm 0.1(\text{stat}) \pm 0.7(\text{exp}) \pm 0.3(\text{lumi}) \text{ pb} \]

Main experimental systematic: photon identification and isolation. Less than factor 2 wrt 7 TeV.

Cross section from fixed order calculation lower than data. Improvement NLO \(\to\) NNLO.
Improvement NLO \rightarrow NNLO. In most parts of the phase space, the fixed order predictions are unable to reproduce the data.
Fixed-order calculations are not expected to give reliable predictions in regions sensitive to infrared emissions (low values of $p_T, \gamma\gamma, a_T$ and ϕ^*_η or $\Delta \phi_{\gamma\gamma} \sim \pi$)

The effects of infrared emissions are well reproduced by the inclusion of soft-gluon resummation at NNLL (low a_T, low ϕ^*_η)
Conclusions

Direct photons at 13 TeV

- NLO predictions provide an adequate description.
- Theoretical uncertainties > experimental: NNLO pQCD corrections are needed

Photon+jet at 13 TeV: new results. Comparison with SHERPA ME+PS@NLO.

Photon+jet(s) at 8 TeV

- Very detailed analysis: 6 regions, 35 cross sections
- First observation of different QCD radiation pattern around the photon and 1st jet
- Stringent tests of pQCD up to $O(\alpha_{EM}\alpha_s^4)$

Diphoton at 8 TeV:

- Systematic uncertainty decreased by a factor 2 wrt 7 TeV on the cross section
- Precise probe of QCD infrared emissions (a_T, ϕ_η^*) complementary to Drell-Yan
- Improvement with NNLO but still more than 2σ away
- Soft gluon resummation at NNLL (RESBOS) provides a good description of infrared emissions.
- SHERPA 2.2.1 (ME+PS at NLO) provides good predictions at particle level: $H \rightarrow \gamma\gamma$ background
Section 1

Backup
Photon+jet 13 TeV tree level

ATLAS Preliminary
\[\sigma \frac{d}{dE_T} \]

MC/Data

0.5
1
1.5

Jet lead \(p_T \) > 100 GeV

Jet lead \(p_T \) > 125 GeV

\[\Delta \phi_{\gamma-jet} \]

MC/Data

0.5
1
1.5

Jet lead \(m_{\gamma-jet} \) > 450 GeV

Jet lead \(|\cos \theta'| \) < 0.83

Jet lead \(|\eta_{\gamma-jet}| \) < 2.37

MC/Data

0.5
1
1.5

R. Turra (UNIMI)

Photon cross sections at ATLAS
Jul 6th 2017