Reconstructing Track-CaloClusters (TCCs)

Topoclusters

Topoclusters are very large, with a typical width of roughly 0.1 in both ϕ and η. This holds as a function of both η and p_T.

Tracks

The track position is known very precisely, and the uncertainty on its extrapolation to the calorimeter is two orders of magnitude smaller than the width of a cluster at high p_T.

Em Clusters

Tracks can resolve structure within clusters.

Matching to clusters

Matching tracks to clusters smaller than the width of a cluster at high p_T. To do this, a track-cluster matching must be performed. This proceeds in two steps:

1. Attempt match with $d\phi < \Delta \phi_{\text{cluster}}$ (width)
2. Match if $(d\eta)^2 < (\Delta \eta^2 + \Delta \phi_{\text{cluster}})^2$

In case of track-cluster-multi-matches, create one TCC object per hard-scatter PV track, and share the energy based on p_T, ratios:

$\text{TCC}_\text{charged} = (p_T^t, \eta^t, \phi^t, m^t = 0)$

$\text{TCC}_\text{neutral} = (p_T^c, \eta^c, \phi^c, m^c = 0)$

$\text{TCC}_\text{combined} = (p_T^t, \eta^t, \phi^t, m^t, m^c = 0)$

$\text{TCC}_\text{combined mult-matches} = (p_T^t, \eta^t, \phi^t, m^t, m^c = 0)$

Matching fractions:

Charged: unmatched tracks from the PV0

Neutral: clusters not matched to any PV track

Combined: PV0 track matched to cluster(s)

Reconstructing jets from TCCs:

Jet reconstruction

Follow standard ATLAS jet reconstruction:

- Anti-k_T algorithm with $R = 1.0$.
- Trimmed with $R_{\text{cut}} = 0.2$ and $f_{\text{cut}} = 5\%$

Inputs to jet building:

Consider jets built from three types of inputs:

1. LC topoclusters (normal ATLAS approach)
2. All TCCs (charged, neutral, combined)
3. Only combined TCCs

Jet substructure performance for W/Z boson tagging using TCCs

Topoclusters use combined mass (m_{comb}), a linear combination of calorimeter (m_{calo}) and track-assisted (m_{TA}) masses:

- m_{comb} works well at low p_T, m_{calo} at high p_T.
- m_{TA} ignores local charge/neutral variations.

Tracks

2. Most powerful for W/Z-tag, after mass

$D_2 = \text{ECF}3 \times (\text{ECF}1)^2 / \text{ECF2}^2$

However, D_2 precision depends on detector granularity, thus TCC is hugely beneficial.

Correcting for jet mass resolution

$\frac{1}{\sigma^2_{\text{true}}} = \frac{1}{\sigma^2_{\text{reco}}} = \frac{1}{\sigma^2_{\text{true}}}$

$\frac{1}{\sigma^2_{\text{reco}}} = \frac{1}{\sigma^2_{\text{true}}}$

$\sigma_{\text{comb}} = \sqrt{\sigma_{\text{true}}^2 + \sigma_{\text{reco}}^2}$

$\sigma_{\text{true}} = \sqrt{\frac{1}{\sigma^2_{\text{true}}} - \frac{1}{\sigma^2_{\text{reco}}}}$

$\sigma_{\text{reco}} = \sqrt{\frac{1}{\sigma^2_{\text{true}}} - \frac{1}{\sigma^2_{\text{reco}}}}$

$\sigma_{\text{true}} = \sqrt{\frac{1}{\sigma^2_{\text{true}}} - \frac{1}{\sigma^2_{\text{reco}}}}$

$\sigma_{\text{reco}} = \sqrt{\frac{1}{\sigma^2_{\text{true}}} - \frac{1}{\sigma^2_{\text{reco}}}}$

Mass response

$\frac{m_{\text{true}}}{m_{\text{true}}} = \frac{m_{\text{true}}}{m_{\text{true}}} = \frac{m_{\text{true}}}{m_{\text{true}}} = \frac{m_{\text{true}}}{m_{\text{true}}}$

$\sigma_{\text{true}} = \sqrt{\frac{1}{\sigma^2_{\text{true}}} - \frac{1}{\sigma^2_{\text{reco}}}}$

$\sigma_{\text{reco}} = \sqrt{\frac{1}{\sigma^2_{\text{true}}} - \frac{1}{\sigma^2_{\text{reco}}}}$

All results from ATL-PHYS-PUB-2017-015