J/ψ production in proton-lead collisions at 8 TeV with the LHCb detector

17th International Conference on Strangeness in Quark Matter, 10-15 July 2017, Utrecht, the Netherlands

Sasha Okhrimenko on behalf of LHCb Collaboration

Institute for Nuclear Research NAS of Ukraine, Kiev
Motivation

- Measurements of non-deconfinement effects in proton-nucleus collisions:
 - nuclear PDF,
 - saturation,
 - coherent energy loss.
- Important prerequisite for other measurements:
 - \(\psi(2S) \) and \(\chi_c \): density effects on excited states?
 - Drell-Yan: disentangle shadowing to energy loss.
- Unique opportunity for precise measurements of \(J/\psi \)-from-\(b \) hadrons.
- In 2016 higher energy and larger statistics (\(\sqrt{s} = 8.16 \text{ TeV}, \int \mathcal{L} dt \sim 35 \text{ nb}^{-1} \)) than in 2013 (\(\sqrt{s} = 5.02 \text{ TeV}, \int \mathcal{L} dt \sim 2 \text{ nb}^{-1} \)) [1].

• LHCb [1] – forward spectrometer, located at LHC.
• Acceptance $2 < \eta < 5$
• Proton-proton interaction at up to $\sqrt{s} = 13$ TeV, $\mathcal{L} = 4 \cdot 10^{32}$ cm$^{-2}$s$^{-1}$.
• Goal: CP violation and rare decays of B-mesons.

• Resolutions [2]:
 • spatial (PV position): ~ 16 μm;
 • decay time: ~ 50 fs;
 • track’s momentum: 0.5–0.4%;
 • mass (FWHM): ~ 13 MeV (J/ψ);
 • particle identification: $\sim 96%$.

2016 heavy ion run:
Ion = 208Pb, $\sqrt{s_{NN}} = 8.16$ TeV, Integrated luminosity: 13.6 nb$^{-1}$ (Fwd), 20.8 nb$^{-1}$ (Bwd).

Monte Carlo samples: EPOS-LHC. J/ψ from PYTHIA8 injected into each event [1].

Signal Extraction

- \(J/\psi \rightarrow \mu^+\mu^- \)
- Prompt \(J/\psi \)
- and \(J/\psi \)-from-\(b \) hadrons are extracted by simultaneous fit of mass and pseudo-proper time:
 \[t_z = (Z_{J/\psi} - Z_{PV}) \cdot M_{J/\psi}/p_Z \]

- Mass distributions:
 - Signal: Crystal-Ball.
 - Bkg: exponential.

- \(t_z \) distributions:
 - Signal: \(\delta(t_z) \) for prompt \(J/\psi \);
 Exponential for \(J/\psi \)-from-\(b \).
 - Bkg: empirical function from sideband.

- Total yields:
 - Prompt from-\(b \)
 - Forward: \(\sim 3.8 \cdot 10^5 \); \(\sim 6.7 \cdot 10^4 \)
 - Backward: \(\sim 5.6 \cdot 10^5 \); \(\sim 7.1 \cdot 10^4 \)
\[
\frac{d^2\sigma}{dp_T \ dy^*} = \frac{N}{\Delta p_T \cdot \Delta y^* \cdot \epsilon \cdot B \cdot L}
\]

- \(N\) – number of reconstructed prompt \(J/\psi\) or \(J/\psi\)-from-\(b\);
- \(\Delta p_T = 1\ \text{GeV}/c\) – transverse momentum bin widths;
- \(\Delta y = 0.5\) – rapidity bin widths;
- \(\epsilon\) – total efficiency;
- \(B\) – branching fraction of \(J/\psi \rightarrow \mu^+\mu^-\) decay (\(\sim 6\%\)) [PDG];
- \(L\) – integrated luminosity.
Results: f_b

Fraction of J/ψ-from-b hadrons:

$$f_b = \frac{\frac{d^2 \sigma_{J/\psi-\text{from-}b}}{dp_T dy^*}}{\frac{d^2 \sigma_{\text{Prompt} J/\psi}}{dp_T dy^*} + \frac{d^2 \sigma_{J/\psi-\text{from-}b}}{dp_T dy^*}}.$$

- Comparing $p-p$ (black), forward (blue) and backward (red) configurations.
- Similar trends.
- But deviations at low p_T highlight the differences in the nuclear effects on prompt J/ψ and J/ψ-from-b hadrons.
- Advantage: most systematic uncertainties cancel.
Results: $p-p@8.16$TeV reference

- $p-p$ measurements at 8.16 TeV not available.
- Estimated based on interpolation (in energy), extrapolation (in rapidity outside pp coverage) of measurements at 7, 8 and 13 TeV.
- These methods were validated with ALICE and LHCb data [1]

Results: Nuclear Modification Factors: Prompt J/ψ

$$R_{p\text{Pb}}(p_T, y^*) = \frac{\frac{d^2\sigma}{dp_T dy^*}_{p\text{Pb}}}{208 \cdot \frac{d^2\sigma}{dp_T dy^*}_{pp}}$$

- In Fwd: suppression at low p_T up to 50%, converging to unity at high p_T.
- In Bwd: $R_{p\text{Pb}}$ closer to unity.
- Intriguing low values in Bwd at low p_T.
- Overall agreement with models:
 - Collinear factorization: nuclear PDF (HELAC) [1].
 - Color-Glass Condensate (CGC) [2].
 - Coherent energy loss [3].
- Compatible with p-Pb@5TeV results.

13.07.2017 O. Okhrimenko, SQM 2017, Utrecht, the Netherlands
Results: Nuclear Modification Factors: J/ψ-from-b

$$R_{pPb}(p_T, y^*) = \frac{\frac{d^2\sigma}{dp_T\,dy^*}}{208 \cdot \frac{d^2\sigma}{dp_T\,dy^*}}_{pp}$$

- In Fwd: suppression at low p_T up to 30%, converting to unity at high p_T.
- In Bwd: R_{pPb} above unity, p_T dependence.
- Overall agreement with Model: FONLL with EPS09NLO [1].
- Compatible with p-Pb@5TeV results.
- Unprecedented precision.

Results: Forward-Backward Asymmetry

\[R_{FB}(p_T, |y^*|) = \frac{d^2\sigma}{dp_T dy^*}(p_T, y^*)/\frac{d^2\sigma}{dp_T dy^*}(p_T, -y^*) \]

- Clear forward-backward asymmetry for prompt \(J/\psi \), in particular at low \(p_T \).
- For \(J/\psi \)-from-\(b \): \(R_{FB} \) is closer to unity.
- Agreement with \(p\text{-}p\text{-}\text{Pb}@5\text{TeV} \) data within uncertainties
- Total uncertainty ~ 10%
- Advantage: no \(pp \)-reference needed; many uncertainties cancel.
Conclusions

• Prompt and non-prompt J/ψ production cross-sections as function of p_T and y^* are measured.
• Nuclear modification factors and Forward-backward backward asymmetry are measured as well.
• Unprecedented precision for prompt J/ψ and most significantly for J/ψ-from-b.
• These results can have an impact in constraining models for nuclear effects.
• These results will be the reference for the analysis of higher charmonium states.