Inclusive searches for squarks and gluinos in final states with leptons with the ATLAS detector

Ximo Poveda (CERN)
Introduction

• Leptons can appear in SUSY decay chains involving W/Z or sleptons
 ○ Also in the decays of neutralinos in some RPV models: \(\tilde{\chi}_1^0 \rightarrow \ell^+ \ell^- \nu \)
• Typically lower signal branching ratios than 0-lepton analyses, but not so affected by QCD multi-jet background

Also providing some additional experimental handles:
 ○ Leptonically decaying Z boson
 ○ Kinematic edges in dilepton invariant mass (can also be used to measure particle masses)
 ○ Same-sign dileptons (gluino production or long decay chains)

Searches for squarks/gluinos included in this talk:
 ○ [NEW] 1\(\ell \) (36.1 fb\(^{-1}\)): SUSY-2016-12, to appear
 ○ 2\(\ell \) opposite-sign (14.7 fb\(^{-1}\)): Eur. Phys. J. C 77 (2017) 144
 ○ 2\(\ell \) same-sign/3\(\ell \) (36.1 fb\(^{-1}\)): arXiv:1706.03731, submitted to JHEP
Search with 1ℓ: Motivation & Strategy

- Targeting SUSY models with W/Z bosons, with either short/long decay chains

- Models probed with signal regions (SRs) with 1ℓ, large E_T^{miss} (> 200 GeV), and either ≥ 2 jets, ≥ 4 jets (several \tilde{q}/\tilde{g}, $\tilde{\chi}^\pm$ and $\tilde{\chi}_1^0$ mass differences), ≥ 6 jets or ≥ 9 jets

- Sensitivity enhanced using transverse mass (m_T), aplanarity or effective mass (m_{eff})

- Control regions (CRs):
 - b-veto: $W+$jets
 - $\geq 1b$-jet: $t\bar{t}+Wt$

- For ≥ 2-6 jets:
 - CRs at low E_T^{miss}, m_T, aplanarity
 - For each m_{eff} bin, with same N_{jet} requirements as SRs
 - Using MC CR\rightarrowSR transfer factor

- For ≥ 9 jets:
 - Estimated using data at low N_{jet} and m_T
Search with 1\ell: Results

- Validation regions defined at intermediate values of E_T^{miss}, m_T → Good agreement with the background estimates
- No significant excess observed in the SRs (mild excess in 2-jet b-veto)
Search with 1ℓ: Interpretations

- Excluding gluino(squarks) masses of 2.1(1.2) TeV in $\tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$ and $\tilde{q} \rightarrow qW\tilde{\chi}_1^0$ simplified models
- Limits also computed for varying $(\tilde{g}/\tilde{q}, \tilde{\chi}_1^±, \tilde{\chi}_1^0)$ mass hierarchies
- In $\tilde{g} \rightarrow q\bar{q}WZ\tilde{\chi}_1^0$ simplified models, limits reach 1.7 TeV in gluino mass
Search with $2\ell OS$: Motivation & Strategy

- Two different searches in $2\ell OS+jets+E_{T}^{\text{miss}}$:
 - $Z \rightarrow \ell\ell$ produced in the decay chain of $\tilde{g}/\tilde{q} \Rightarrow$ Excess at $m_{\ell\ell} \sim m_{Z}$
 - Excess with triangular shape expected in cascade decays like $\tilde{\chi}_{2}^{0} \rightarrow \ell \tilde{\chi}_{1} \rightarrow \ell\ell \tilde{\chi}_{1}^{0} \Rightarrow$ “edge” on $m_{\ell\ell}$ depending on the sparticle masses

- 3σ excess in Run-1 \rightarrow on-sell Z SR essentially unchanged since then
- Edge search: SRs for low/medium/high H_{T}, divided in 24 $m_{\ell\ell}$ windows

Backgrounds:
- Flavor symmetric ($t\bar{t}$, WW): estimated from $e\mu$ data
- Z+jets (E_{T}^{miss} from jet mismeasurements): estimated by smearing γ+jets data
- Fake/non-prompt leptons: data-driven
- Rest (diboson, etc.): from MC

Dedicated VRs for the main backgrounds
Search with 2ℓOS: On-shell Z results

- No excess observed in the on-shell Z search
- Data in agreement with expected background kinematic distributions

- Excluding gluino masses up to 1.3 TeV and squark masses up to 1 TeV in simplified models featuring \(\tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0 \) decays (\(m_{\tilde{\chi}_1^0} = 1 \) GeV, similar to GGM models)
Search with $2\ell OS$: Edge results

- No significant excess across the bins of the edge search
 - Largest excess of 1.7σ local significance in SR at high H_T and $12 < m_{\ell\ell} < 101$ GeV

- Interpretation in simplified models with $\tilde{g} \rightarrow qq\tilde{\chi}_2^0$, $\tilde{\chi}_2^0 \rightarrow \ell\ell \rightarrow \ell\ell\tilde{\chi}_1^0$
- Excluding gluino masses up to 1.8 TeV and neutralino masses of up to 900 GeV
Search with $2\ell SS/3\ell$: Motivation & Strategy

- Signature: dilepton same-sign (SS) or three leptons + jets
- Broad sensitivity to many SUSY models with gluinos (Majorana particles) or involving $W/Z/\tilde{\ell}$, both in R-parity conserving/violating SUSY scenarios
- Analysis featuring looser kinematic requirements than other searches (SS requirement rejecting $t\bar{t}$) → Better sensitivity to compressed scenarios
- Only analysis exploring $\tilde{b} \rightarrow t\tilde{\chi}_1^\pm$ and \tilde{d}_R production in RPV

- SRs defined with SS/3ℓ, 3-6 jets, 0-2 b-jets, E_T^{miss} (for RPC) and m_{eff}

- New signature: three same-sign leptons ($\ell^+\ell^+\ell^\pm$)
 - Model originally proposed by Low et al. (arXiv:1507.01601) to explain Run-1 same-sign excesses ($t\bar{t}H$, $t\bar{t}W$, etc.)
 - Very basic SR: $\geq 3\ell$ with the same charge, ≥ 1 b-jet, veto on $81 < m_{e^+ e^-} < 101$ GeV
Search with 2ℓSS/3ℓ: Results

- **Background estimation:**
 - Electron charge mis-id: data-driven
 - Factor ~ 10 reduction with new BDT
 - Fake/non-prompt lepton: data-driven
 - Two different methods used and combined for final estimates
 - Others ($t\bar{t}V$, diboson, rare): from MC
- **No significant excess observed in the SRs**
Search with 2ℓSS/3ℓ: RPC Interpretations

- Significantly extending previous limits:
 - Excluding \tilde{b} masses of 700 GeV in $\tilde{b} \rightarrow t\tilde{\chi}^\pm_1$
 - Excluding \tilde{g} masses up to 1.6-1.8 TeV in some models
 - Very good improvement also for heavy $\tilde{\chi}^0_1$ (compressed scenarios), reaching $\tilde{\chi}^0_1$ masses of \sim900 GeV
- First limits of $m_{\tilde{t}} \approx 700$ GeV in the $\tilde{t}_1 \rightarrow t\tilde{\chi}_2^0 \rightarrow tW\tilde{\chi}_1^\pm \rightarrow tWW^*\tilde{\chi}_1^0$ model
Search with 2ℓSS/3ℓ: RPV Interpretations

- Excluding gluino masses of 1.4-1.8 TeV in RPV models, with also very good coverage for compressed topologies
- Exclusion limits of around 500 GeV in models with \tilde{d}_R pair production
Summary

• Signatures with leptons are a powerful and versatile strategy to search for squarks and gluinos at the LHC
 ○ Leptons are produced in decay chains with sleptons, gauge bosons or in RPV models
 ○ Great reduction of backgrounds

• Recent analyses using $1-3\ell + \text{jets} (+E_T^{\text{miss}})$ in ATLAS
 ○ No excess observed 😐
 ○ Exclusion limits reaching gluino masses of up to 2 TeV
 ○ Also good sensitivity at high neutralino masses and in compressed topologies

• Also new signatures being explored: $2\ell^{\pm}S\text{S}$ without E_T^{miss} for RPV models or $\ell^{\pm}\ell^{\pm}\ell^{\pm}$
Backup Slides
Search with 1ℓ: alternative background estimation

- m_T requirements in SR:
 - Dileptonic $t\bar{t}$ dominates in the SR
 - Semi-leptonic $t\bar{t}$ is more prominent in the CR (missing lepton, hadronically decaying tau)

- Alternative background estimation by object replacement method

- Consistent results with nominal estimation

Alternative estimation of dileptonic background
- Due to m_T cut dileptonic background dominates SR
- Alternative estimation by replacement method
- Consistent results with nominal estimation

Yields 1×10^7 ATLAS Internal

$\sqrt{s} = 13$ TeV, 36.5 fb$^{-1}$, $\text{miss } p_T + \text{jets} + E_T^{\mu}$

Pull (Obj. Rep.-Nom.)

2×10^{-1}

$Ximo Poveda (CERN)$

July 6, 2017 15
Search with 2ℓOS: additional interpretations

\[\tilde{g} \tilde{g} \rightarrow q\bar{q} \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow Z \tilde{\chi}_1^0; \ m(\tilde{\chi}_1^0) = m(\tilde{\chi}_2^0) + 100 \text{ GeV} \]

\[\tilde{g} \tilde{g} \rightarrow q\bar{q} \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_2^0; \ m(\tilde{\chi}_2^0) = m(\tilde{\chi}_1^0) + 100 \text{ GeV} \]

\[\tilde{g} \tilde{g} \rightarrow q\bar{q} \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow Z \tilde{\chi}_1^0; \ m(\tilde{\chi}_1^0) = m(\tilde{\chi}_2^0) + 100 \text{ GeV} \]

\[\tilde{g} \tilde{g} \rightarrow q\bar{q} \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_2^0; \ m(\tilde{\chi}_2^0) = m(\tilde{\chi}_1^0) + 100 \text{ GeV} \]

\[\tilde{g} \tilde{g} \rightarrow q\bar{q} \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow Z \tilde{\chi}_1^0; \ m(\tilde{\chi}_1^0) = m(\tilde{\chi}_2^0) + 100 \text{ GeV} \]

\[\tilde{g} \tilde{g} \rightarrow q\bar{q} \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_2^0; \ m(\tilde{\chi}_2^0) = m(\tilde{\chi}_1^0) + 100 \text{ GeV} \]

\[\tilde{g} \tilde{g} \rightarrow q\bar{q} \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow Z \tilde{\chi}_1^0; \ m(\tilde{\chi}_1^0) = m(\tilde{\chi}_2^0) + 100 \text{ GeV} \]

\[\tilde{g} \tilde{g} \rightarrow q\bar{q} \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_2^0; \ m(\tilde{\chi}_2^0) = m(\tilde{\chi}_1^0) + 100 \text{ GeV} \]