Soft QCD Measurements at LHC

Marek Taševský
Institute of Physics, Academy of sciences, Prague, Czech Republic
On behalf of the LHC experiments
(ALICE, ATLAS, CMS, LHCb, LHCf, TOTEM)

Lepton Photon 2017 Sun Yat-Sen University, Guangzhou 7-12/08/2017
Soft QCD:
- characterized by a soft scale (low p_T)
- applied to describe
 - the part of the scattering that dominates at soft scale
 - hadronization
- not uniform description, variability in modeling

Soft scale → processes with large cross sections:
- Inclusive cross sections
- Inclusive & Identified particle spectra
- Underlying event
- Particle correlations
- Similarities between pp / pPb / PbPb

Multi-parton interactions (MPI)
- Colour coherence / reconnection
- Hadronization (line, ropes, helix)
- Hydrodynamics / Gluon saturation

Very interesting links between so different fields
Inclusive (total & elastics) pp cross-sections

TOTEM, ALFA(ATLAS): dedicated forward proton detectors (~220-240 m from interaction point)
- very close to beam (~few mm dep. on LHC optics (β^*))
- the larger β^*, the lower t
- dedicated runs: various collision energies, negligible pile-up
 β^* range: 11m - 2500m \rightarrow $0.0006 < |t| < 2$ GeV2

13 TeV: $\beta^* = 2500$ m, $0.0006 < |t| < 0.2$ GeV2
- Coulomb-Nuclear Interference region $\rightarrow \rho$ can be measured
- $\rho = $ Real to imaginary part of forward amplitude

σ_{tot} input to model
- amount of pile-up at LHC
- interactions in cosmic rays
Inclusive charged particles in pp (0.9–13 TeV)

\[\sqrt{s} = 0.9, 2.36, 2.76, 7, 8 \text{ TeV} \]
\[|\eta| < 2, p_T > 0.1 \text{ GeV} \]

\(\text{INEL} = \text{all (MB) events} \)
\(\text{NSD} = \text{Non Single Diffraction} \)

(ALICE, PbPb: PRL 116 (2016) 222302)

ALICE, EPJC77 (2017) 33

ATLAS, EPJC76 (2016) 502

QGSJET: no colour coherence
PYTHIA 8: colour reconnection
EPOS: hydrodynamical evolution

CMS-PAS-FSQ-15-008

Difficulties of all models to describe larger multiplicities

EPOS overall best description (specialized soft QCD model)

\[C_q = \frac{<N_{ch}>}{<N_{ch}^q>} \]

For NSD events and three |\eta| intervals:
\(C_2 \) constant over \(\sqrt{s} = 0.9-8.0 \) range
\(C_3, C_4, C_5 \) increase with \(\sqrt{s} \) and with increasing \(\Delta\eta \) at given \(\sqrt{s} \)

In general: all models need to be retuned for every energy

KNO scaling violation

11/08/2017

M. Tasevsky, Soft QCD Measurements at LHC, LP2017
Very forward energy flow

CASTOR (-6.6 < η < -5.2) with EM and HAD calorimeters
- Inclusively EM particles (e⁺, e⁻, γ)
- Inclusively hadrons (mainly π⁺, π⁻) CMS, CERN-EP-2016-313

Measurements suitable to tune:

1) Multi-Parton Interaction models in MC generators for pp collisions

2) MC generators modeling HE cosmic ray air showers

√s – evolution of model parameters is unknown
Again: MC generators need to be retuned for every energy point

Neutrons at 7 TeV, pp
LHCf, PLB 750 (2015) 360

- Xmax (shower maximum position) modeling: σ_p-air & forward identified particle spectra
- hadronic interaction modeling: correlation central-forward particle production (ATLAS vs LHCf or CMS vs TOTEM)

LHCf: calorim. measuring soft neutral (n,π⁰,γ) particles
- 140m from ATLAS, |η| > 8.4
Enhanced strangeness
= signature of QGP formation in heavy-ion collisions

- for the 1st time observed in pp
- similar dependence on particle multiplicity in PbPb, pPb, pp

DIPSY closest to data (color ropes)

Strangeness enhancement wrt inclusive sample follows strangeness hierarchy:

- the same for pPb and pp

See also talk by A. Kalweit
Identified particle spectra in pp (13 TeV)

- Negligible pile-up
- Identification via dE/dx
- π, K, p: $p < 1.2, 1.05, 1.7$ GeV
- $|y| < 1.0$ (2.4 for N_{tracks})

Ratio of particle yields K/π & p/π correctly described by PYTHIA 8

- Low-multiplicity region well described
- High-multiplicity region needs tuning of baryon and/or strangeness prod.

$<p_T>$ increases with $m_{particle}$ & N_{tracks}
\sqrt{s} - evolution connected with saturation scale of gluons in proton
Underlying Event study (13 TeV)

ATLAS, JHEP03 (2017) 157, also CMS tunes for UE/DPS in EPJC76 (2016) 155

Min.Bias events, leading track $|\eta| < 2.5$, $p_T > 0.5$ GeV

- Balance between two soft QCD properties
- Affected by color reconnection

UE = everything except the hard scattering
- Initial state radiation
- Finale state radiation
- Multi-parton interactions
- Color reconnection

More collision energy → more UE activity.
Typical plateau observed

Drell Yan events, leading $\mu^+\mu^-$ pair $|\eta| < 2$, $p_T > 0.5$ GeV

High sensitivity to MPI
2-Particle azimuthal correlations

Long-range (|Δη|>2) ridge in 2-PC on near side (Δφ~0) observed in large systems (central AA coll.) - described by Fourier decomposition ~ \(1 + 2ν_n \cos(nΔφ) \), \(ν_n \) = single-particle anisotropy harmonics - result of collective hydrodynamic expansion of hot and dense nuclear matter created in the overlap region

But long-range ridge seen also in pPb (much smaller system) and even in pp at high multiplicity!

- Origin of the ridge in small systems still under debate: hydrodynamics like for QGP? Initial state fluctuations (Color Glass Condensate/gluon saturation)? Hadronization using ropes? Thin flux tubes?
- Ridge = testing ground to study complementarity between dynamical and hydrodynamical models

See also talk by A. Kalweit
2-Particle azimuthal correlations

- Size of near-side ridge & away-side ridge increases with multiplicity
- Size of near-side ridge maximal for $1 < p_T < 2$ GeV

Ridge separation from non-flow (resonance decays, dijets) using:
- low-multiplicity events (e.g. ATLAS, PRL 116 (2016) 172301)
- three-subevent method (next slide)

$v_2\{2\}(pp) < v_2\{2\}(pPb) < v_2\{2\}(PbPb)$

Expected: $v_2\{2\}(pPb) \ll v_2\{2\}(PbPb)$

11/08/2017

M. Tasevsky, Soft QCD Measurements at LHC, LP2017

PbPb 5 TeV:
LHCb, PLB 762 (2016) 473
(ALICE, CERN-EP-2016-228)

ATLAS, EPJC77 (2017), 428
CMS, PRL 116 (2016), 172302

$\langle N_{ch}(p_T > 0.4 \text{ GeV}) \rangle$

$\langle \text{associated yield} \rangle (\text{GeV}^2)$
2-particle correlations suffer from non-flow. Multi-particle correlations are more robust against non-flow effects. But also more statistically demanding.

Method: build cumulants $c_n\{2k\}$ and calculate flow harmonics $v_n\{2k\}$

Extraction of collective flow in pp depends strongly on:

- Event classification
- Purity of non-flow subtraction

Three-subevent method: reduces well the non-flow and gives 4-particle cumulant $c_2\{4\} < 0$ in all three collision systems

$$v_2\{4\} = \sqrt[4]{-c_2\{4\}}$$

- $v_2\{4\} < v_2\{2\}$ in pPb and PbPb as expected for a long-range collective effect
- $v_2\{4\} \leq v_2\{2\}$ also in pp ($v_2\{4\}$ smaller for three-subevent method)
- $v_2\{4\} \sim v_2\{6\}$ in all three systems: Collective nature of ridge also in pp!

CMS, PLB 765 (2017) 193
Angular correlations of identified particles

Study of near-side peak ($\Delta \eta \sim 0, \Delta \varphi \sim 0$)

Baryon-(Anti)Baryon correlation

(Anti)Baryon-(Anti)Baryon anticorrelation

Depression not explained by:
- Fermi-Dirac Quant. Stat. (since depression seen also for $p\Lambda + \bar{p}\bar{\Lambda}$)
- Strong final state interactions
- Local baryon nr. conservation

Not reproduced by MC (Pythia 6, Pythia 8, Phojet - conserve local baryon nr., do not include quantum stat. effects).

Something essential missing in string fragmentation.

11/08/2017
Bose-Einstein correlations in pp, pPb, PbPb

Min. Bias pp events, $|\eta| < 2.5$, $p_T > 0.1$ GeV

2-PC (C_2) of identical particles: Same-sign/Opposite-sign double ratio Data/MC

$C_2 = C_0 [1 + \Omega(\lambda, R)] (1 + \varepsilon Q)$

$\lambda =$ correlation strength

$R =$ correlation source size

- Decrease of R with k_T measured (as in pPb: ATLAS, CERN-EP-2017-004)
- Saturation of R at high-mult. - observed for the 1st time
- Larger sources appear more coherent (pp, LHCb-PAPER-2017-025)

Multi-pion BEC in PbPb: ALICE, PRC 93 (2016) 054908

- Ratio measured multi-π / expected multi-π from 2-\pi:
 - pp, pPb: no suppression observed
 - PbPb: suppression at low Q_4, Q_3

4-\pi: explained by 32% of coherent correlations
(but 3-\pi: not explained by 32% of coherent correlations)

(PbPb: ALICE, PRL 118 (2017) 222301)
SUMMARY

- Soft QCD measurements important in many aspects:
 - σ_{tot} as input for modelling pile-up at LHC and extensive air showers caused by cosmic rays
 - Very forward flow (also vs central flow) to model interactions in cosmic rays
 - Underlying event non-negligible in many LHC analyses
 - Particle correlations as a powerful tool to study multihadron production
 - To understand hadronization process

- All collision systems useful for soft QCD studies, complementing each other
- Performant LHC @ experiments provide high-statistics & high-precision data samples → estimate reliably many sources of systematics
- Sophisticated techniques (low $p_T \sim 100$ MeV, efficient background subtraction, unfolding…)
- Precision data help faster understand unexplained phenomena and develop/reject models

- Necessity to retune MC models to describe data at every energy
- Similar phenomena observed in PbPb / pPb / pp (high multiplicity) collisions: strangeness enhancement, collectivity effects. Why in small systems (pPb, pp)? Currently lively discussed
- Near-side ridge as testing ground to study complementarity between hydrodynamics/QGP and dynamics model (CGC/saturation/ropes)
- Intensive works on improving the hadronization models (lines/ropes/helices)
Inclusive (total) pp cross-sections

TOTEM, ALFA(ATLAS): dedicated forward proton detectors (~220-240 m from interaction point)
- very close to beam (~few mm dep. on LHC optics (β^*))
- the larger β^*, the lower t
- dedicated runs (special LHC optics, negligible pile-up)

New TOTEM results for 2.76 TeV
$\beta^* = 11\text{m}, 0.08 < |t| < 0.4 \text{GeV}^2$

New ATLAS 8 TeV results
$\beta^* = 90\text{m}, 0.014 < |t| < 0.1 \text{GeV}^2$
ATLAS, PLB 761 (2016) 158

New ATLAS result for 13 TeV
- Central detector only
ATLAS, PRL 117 (2016) 182002

1) elastic observables only, $\rho=0.145$ from COMPETE, optical theorem
$$\sigma_{tot}^2 = \frac{16\pi}{1+\rho^2} \frac{1}{L} \frac{dN_{el}}{dt}(0)$$

2) no ρ, no optical theorem
$$\sigma_{tot} = \frac{1}{L} (N_{el} + N_{inel})$$

3) no L, optical theorem
$$\sigma_{tot}^2 = \frac{16\pi}{1+\rho^2} \frac{dN_{el}}{dt}(0)$$

σ_{tot} input to model
- amount of pile-up at LHC
- interactions in cosmic rays
8 TeV, $\beta^* = 90$m, $0.027 < |t| < 0.2$ GeV2
- Coulomb effects negligible

New (preliminary) results at 13 TeV: $\beta^* = 2.5$km,
$0.0006 < |t| < 0.2$ GeV2
- Coulomb-Nuclear Interference region

Pure exponential form ($N_b=1$) excluded at 7.2σ significance

Non-exponential form observed also at 7 and 13 TeV

8 TeV: $\beta^* = 1.0$km, $0.0006 < |t| < 0.2$ GeV2
Coulomb-Nuclear Interference region

13 TeV point to come
2018 plan: 900 GeV

11/08/2017

M. Tasevsky, Soft QCD Measurements at LHC, LP2017
Inclusive charged particles in pp (13 TeV)

Min. Bias events: at least two tracks with $|\eta| < 2.5$, $p_T > 0.1$ GeV

very low value: special procedure

$\tau > 300$ ps (exclude strange baryons due to low reconstruction efficiency)

$EPOS$ gives best overall description

Multiplicity distribution again not described perfectly

$<p_T>(N_{ch})$: QGSJET: no colour coherence
PYTHIA 8: colour reconnection
EPOS: hydrodynamical evolution

11/08/2017

M. Tasevsky, Soft QCD Measurements at LHC, LP2017
Energy measured in CASTOR calorimeter (-6.6 < η < -5.2)

Measurements suitable to tune:

1) MPI models in MC generators for pp collisions

2) MC generators modeling HE cosmic ray air showers

Dashed: tunes based on Tevatron data
Full: Tevatron + LHC (√s = 7 TeV) data
Identified particles at very forward direction

\[\pi^0 \text{ at } 7 \text{ TeV, pp} \]
LHCf, PRD 94 (2016) 032007

\[\text{Photons at 13 TeV, pp} \]
LHCf, CERN-EP-2017-051

\[\eta > 10.94 \]

\[8.81 < \eta < 8.99 \]

\[\text{LHCf: soft neutral particles at very forward direction} \rightarrow \text{constrains models for cosmic rays:} \]

- \(X_{\text{max}} \) (shower maximum position) modeling needs: \(\sigma_{\text{inel}}^{p-\text{air}} \) & forward identified particle spectra

- hadronic interaction modeling needs: correlation between central and fw particle production (ATLAS vs LHCf or CMS vs TOTEM)
Inclusive charged particles in pp (0.9–8 TeV)

\[\sqrt{s} = 0.9, \, 2.36, \, 2.76, \, 7, \, 8 \text{ TeV} \]

|\[|\eta| < 2, \, p_T > 0.1 \text{ GeV} \]

INEL = all (MB) events

NSD = Non Single Diffraction

ALICE, EPJC77 (2017) 33

(PbPb: PRL 116 (2016) 222302)

- Measurement of d\(N_{ch}/d\eta\) (\(\eta=0\))(\(\sqrt{s}\)) \(\sim s^{\delta}\): \(\delta=0.114\) (INEL)
 - \(\delta=0.15\) for central PbPb
- Alternatively: normalized q-moments
 \[C_q = \frac{<N_{ch}^{q}>}{<N_{ch}>^{q}} \]

For NSD events and three |\(\eta|\) intervals:

- \(C_2\) constant over \(\sqrt{s} = 0.9-8.0\) range
- \(C_3, \, C_4, \, C_5\) increase with \(\sqrt{s}\) and with increasing \(\Delta\eta\) at given \(\sqrt{s}\)

KNO scaling violation

|\[11/08/2017 \]

M. Tasevsky, Soft QCD Measurements at LHC, LP2017
Inclusive charged particles in pp (13 TeV)

Min. Bias events: at least two tracks with $|\eta| < 2.5$, $p_T > 0.1$ GeV

- QGSJET: no colour coherence
- PYTHIA 8: colour reconnection
- EPOS: hydrodynamical evolution

EPOS gives best overall description (specialized soft QCD model)

Multiplicity distribution again not described perfectly

CMS-PAS-FSQ-15-008

- $|\eta| < 2.4$, $p_T > 0.5$ GeV
- SD = Single Diffraction

HERWIG++ deficient

EPOS gives best overall description (specialized soft QCD model)

In general: all models need to be retuned for the 13 TeV energy
Underlying Event study (13 TeV)

ATLAS, JHEP03 (2017) 157, also CMS tunes for UE/DPS in EPJC76 (2016) 155

Min. Bias events, leading track |
\(\eta \) | < 2.5, \(p_T > 0.5 \) GeV

Models differ in MPI and color reconnection/coherence model

EPOS overall fine but not good for \(p_T \) (leading) > 10 GeV

Drell Yan events, leading \(\mu^+ \mu^- \) pair |
\(\eta \) | < 2, \(p_T > 0.5 \) GeV

High sensitivity to MPI

More collision energy → more UE activity. Typical plateau observed

CMS-PAS-FSQ-16-008

11/08/2017

M. Tasevsky, Soft QCD Measurements at LHC, LP2017
Strangeness enhancement in PbPb (5 TeV)

New results from 5 TeV PbPb collisions:
√s closer to pPb and pp energies → PbPb points approach better the trend from pp and pPb points.
J/Ψ production in jets

- J/Ψ production occurs in transition between perturbative and non-perturbative QCD
- Measure \(z(\text{J/Ψ}) = \frac{p_T(\text{J/Ψ})}{p_T(\text{jet})} \) for prompt J/Ψ and those from b-hadron decays in jets
 - J/Ψ→μ⁺μ⁻, \(2 < \eta(\text{J/Ψ}, \mu) < 4.5 \), \(p_T(\mu) > 0.5 \) GeV
 - Jets: anti-kt, \(R=0.5 \), \(p_T > 20 \) GeV, \(2 < \eta < 4.0 \)

The 1st ever measurement of \(z(\text{J/Ψ}) \) for prompt J/Ψ!

- Prompt J/Ψ produced in parton showers
- \(z(\text{J/Ψ}) \) not described by LO non-relativistic QCD (includes color-octet+color-singlet mechanisms) as implemented in PYTHIA 8.
- Some soft component missing?

- \(z(\text{J/Ψ}) \) of J/Ψ from b-hadron decays described by PYTHIA 8.
Bose-Einstein correlations in pp, pPb, PbPb

Min. Bias events, $|\eta| < 2.5$, $p_T > 0.1$ GeV

2-PC (C_2) of identical particles: SS/OS double ratio Data/MC

$$C_2 = C_0 [1 + \Omega(\lambda, R)] (1 + \varepsilon) \quad \lambda = \text{correlation strength} \quad R = \text{correlation source size}$$

- Saturation of R at high-mult. observed for the 1st time
- Decrease of R with k_T observed also in pPb (ATLAS, CERN-EP-2017-004)

Larger sources appear more coherent (pp, LHCb-PAPER-2017-025)

Multi-pion BEC: ALICE, PRC 93 (2016) 054908

- Corrected for Coulomb correlations
- Ratio measured multi-π / expected 2-π:
 - pp, pPb: no suppression observed
 - PbPb: suppression at low Q_4, Q_3 4-π: explained by 32% of coherent correlations
 - 3-π: not explained by 32% of coherent corr’s (PbPb: ALICE, PRL 118 (2017) 222301)
Charge-dependent 3-particle azimuthal correlations with respect to (2nd order) event plane:
Same sign (SS) and opposite sign (OS) particle pairs and 3rd particle in forward calorimeter (to probe the long-range correlations).

The (OS-SS) difference interpreted as possible signature of chiral magnetic effect (CME) in AA collisions.

PbPb and pPb data show a similar effect.
BUT: in high-multiplicity pPb collisions a strong CME is not expected
- mag.field smaller than in peripheral PbPb collisions
- angle between mag.field and event plane randomly distrib.

- Slopes for PbPb and pPb different?
- Analogous effect produced by medium vorticity
- (Lambda polarization at STAR)

CMS, PRL 118 (2017) 122301

M. Tasevsky, Soft QCD Measurements at LHC, LP2017
Hadronization of helical QCD string

- Lund string fragmentation: randomly broken 1D string, no cross-talk between break-up vertices
- Quantized helical (3D) string: causality (cross-talk) → 2 parameters (κR, ΔΦ):

 - Hadron spectra follow a simple quantized pattern: \(m_T = n \kappa R \Delta \Phi \)
 - Predicts momentum difference Q for pairs of ground-state hadrons

<table>
<thead>
<tr>
<th>Pair rank difference r</th>
<th>Q expected [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>266 ± 8</td>
</tr>
<tr>
<td>2</td>
<td>91 ± 3</td>
</tr>
<tr>
<td>3</td>
<td>236 ± 7</td>
</tr>
<tr>
<td>4</td>
<td>171 ± 5</td>
</tr>
<tr>
<td>5</td>
<td>178 ± 5</td>
</tr>
</tbody>
</table>

- Adjacent pions produced with \(p_T \) difference ~266 MeV. Low-Q region populated by SS pairs (r=2)

κR, ΔΦ fixed using masses of pseudoscalar mesons:

<table>
<thead>
<tr>
<th>meson</th>
<th>κR [MeV]</th>
<th>ΔΦ [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>135 - 140</td>
<td>137</td>
</tr>
<tr>
<td>η</td>
<td>548</td>
<td>565</td>
</tr>
<tr>
<td>η'</td>
<td>958</td>
<td>958</td>
</tr>
</tbody>
</table>

Enhanced production of identical pairs

Bose-Einstein correlations (incoherent particle production)

Helical string fragmentation (coherent emission of chains of ground state pions)

- \(\Delta(Q) = \frac{[N(OS)-N(SS)]}{N_{ch}} \)
- Describes the low-Q region
- Source of correlations: 3-hadron chains

11/08/2017

M. Tasevsky, Soft QCD Measurements at LHC, LP2017