LHCb Overview

Yasmine Sara Amhis

On behalf of the LHCb Collaboration

ICNFP, August 2017
Physics goals

Precisely understand the Standard Model while trying to break it at the same time.

SM + New Physics Searches

QCD + EW + Direct + Indirect
Precisely understand the standard model while trying to break it at the same time

Physics goals

For example:

- Spectroscopy
- Unitarity triangle
- Long-lived exotics
- Lepton Universality

SM + **New Physics Searches**
The LHCb detector

A forward spectrometer located @ Interaction Point 8 of the LHC
Embarking on second ‘production year’ of Run 2 (after a ‘start-up’ year in 2015). Operating at higher energy and at 25 ns bunch-crossing (+ detector improvements). Run 2 will go to end of 2018 – expect to increase the beauty sample by x3 or more.
Origin of CP Violation in the Standard Model

\[V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0 \]
Rule of the game: over-constrain the triangle and see if it closes
Measurement of γ

The weak phase γ can be measured in the interference of $b \rightarrow c$ and $b \rightarrow u$ decays.

$$A(B^{-} \rightarrow D^{0}K^{-}) = a$$

$\downarrow CP$

$$\bar{A}(B^{+} \rightarrow D^{0}K^{+}) = a$$

$$\gamma = \arg \left(-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right)$$

$$A(B^{-} \rightarrow \bar{D}^{0}K^{-}) = ae^{-i\gamma_{BE}e^{i\delta_{B}}}$$

$\downarrow CP$

$$\bar{A}(B^{+} \rightarrow D^{0}K^{+}) = ae^{+i\gamma_{BE}e^{i\delta_{B}}}$$
$B^\pm \rightarrow D^{(*)0} h^\pm$

$B^\pm \rightarrow D^0 K^\pm$ and $B^\pm \rightarrow D^{*0} K^\pm$ with $D^{*0} \rightarrow D^0 \pi^0 / D^0 \gamma$

LHCb-PAPER-2017-021
CP observables in $B^{\pm}\rightarrow D \ K^{*\pm}$

Results consistent with and more precise than BaBar [PRD 80 (2009) 092001]

Uses 2- and 4-body D^0 decay modes (+ Run 2 data)

Rates and CP asymmetries provide constraints on γ

$$R_{K\pi}^+ = 0.020 \pm 0.006 \text{ (stat)} \pm 0.001 \text{ (syst)}$$

4.2σ evidence of suppressed ADS mode

[LHCb-PAPER-2017-030]
Global fit to γ

$$\gamma = (76.8^{+5.1}_{-5.7})^\circ$$

World average (HFLAV)

$$\gamma = (76.2^{+4.7}_{-5.0})^\circ$$

Many more Run-2 updates and channels expected soon
Expect $O(1^\circ)$ precision after LHCb upgrade
Measurement of $\sin 2\beta$

Interference between mixing and decay

\[
\mathcal{A}_{(c\bar{c})K_S^0}(t') \equiv \frac{\Gamma(\bar{B}^0(t') \rightarrow (c\bar{c})K_S^0) - \Gamma(B^0(t') \rightarrow (c\bar{c})K_S^0)}{\Gamma(\bar{B}^0(t') \rightarrow (c\bar{c})K_S^0) + \Gamma(B^0(t') \rightarrow (c\bar{c})K_S^0)} = S \sin(\Delta m t') - C \cos(\Delta m t'),
\]

\[
\sin(2\beta) = \sin(2\phi_1)
\]

$\Delta \Gamma = (-0.2 \pm 1.0) \times 10^{-2} \text{ ps}^{-1}$ (HFLAV)
Flavour Tagging

π^+

SS pion
SS kaon (for B_s^0)

B^0

J/ψ

K^{*0}

$u \bar{d}$

$\bar{b} \ b$

$\bar{b} \ d$

$b \ x$

h_b

OS charm

K^+

OS kaon

ℓ^-

OS muon
OS electron

$\rightarrow c$

$\rightarrow X \ell^-$

PV

SV

OS vertex charge

same side

opposite side
What do we measure?

\[B^0 \rightarrow J/\psi(e^+ e^-)K^0_S \text{ and } B^0 \rightarrow \psi(2S)(\mu^+ \mu^-)K^0_S \]
Updated LHCb average (all modes)

\[C(B^0 \rightarrow [c\bar{c}]K_S^0) = -0.017 \pm 0.029 \]

\[S(B^0 \rightarrow [c\bar{c}]K_S^0) = 0.760 \pm 0.034 \]
Spectroscopy & EW
Observation of the doubly charmed baryon Ξ_{cc}^{++}

Discovery of the Ω^- 1964

Two SU(4) baryon 20-plets

Ξ_{cc}^{++} will decay via Strong+electromagnetic

Ξ_{cc}^{++} will decay via Weak decay

LHCb run II at $\sqrt{s} = 13$ TeV, ~ 1.7 fb$^{-1}$

Dedicated exclusive trigger ensuring high efficiency, full event reconstruction at trigger level
Observation of the doubly charmed baryon Ξ_{cc}^{++}

Fully reconstruct the decay chain:

$$\Xi_{cc}^{++} \rightarrow K^- \pi^+ \pi^+ \Lambda_c^+ (\rightarrow p K^- \pi^+)$$

Peaking structure remains significant ($> 12\sigma$) after requiring minimum decay time, $t > 5\sigma_t$. It is indeed a weak decay.

Observation of Signal yield: 313 ± 33 candidates

$m(\Xi_{cc}^{++}) = 3621.40 \pm 0.72(\text{stat}) \pm 0.27(\text{syst}) \pm 0.14(\Lambda_c^+) \text{ MeV}$
Measurement of $Z \rightarrow bb$ @ 8 TeV

Looking at $pp \rightarrow (Z \rightarrow bb)j$ events \rightarrow Events with 3 jets, where two are b-tagged.

$$p_T(j_{1,2}) > 20 \text{ GeV}, \quad 2.2 < \eta(j_{1,2}) < 4.2, \quad 45 < m_{jj} < 165 \text{ GeV}.$$

Tough measurement because of abundant QCD background.

$$\sigma(pp \rightarrow Z)B(Z \rightarrow b\bar{b})$$

$$= 332 \pm 46(\text{stat.}) \pm 59(\text{syst.}) \text{ pb}$$

Measurement is compatible with the aMC@NLO prediction.
Indirect NP search
Lepton Universality

NP particles could contribute a charged Higgs in the tree, a Z’ in the penguin, etc.
Measurement of $R(D^*)$

What do we measure?

$$K_{had}(D^*) = \frac{BR(B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau})}{BR(B^0 \rightarrow D^{*-} \pi^+ \pi^- \pi^+)}$$

[\sim 4\% precision*]

$$R(D^*) = K_{had}(D^*) \times \frac{BR(B^0 \rightarrow D^{*-} \pi^+ \pi^- \pi^+)}{BR(B^0 \rightarrow D^{*-} \mu^+ \nu_{\mu})}$$

[\sim 2\% precision*]

Signal and normalisation have very similar topologies \rightarrow benefit from a reduction of systematic uncertainties (trigger, PID).

(*) PDG 2016
New LHCb measurement gives $R(D^*)=0.285 \pm 0.019\text{(stat)} \pm 0.025\text{(syst)}$

Compatible with SM expectation but also fully supporting previous measurements of high value.
New LHCb measurement gives $R(D^*) = 0.285 \pm 0.019^{\text{(stat)}} \pm 0.025^{\text{(syst)}}$

Compatible with SM expectation but also fully supporting previous measurements of high value.

Results are internally consistent and 4σ from SM prediction.

LHCb-PAPER-2017-027
Measurement of $R(K^*)$

What do we measure?

$$R_{K^{*0}} = \frac{\mathcal{B}(B^0 \rightarrow K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \rightarrow K^{*0} J/\psi \rightarrow \mu^+ \mu^-)} \bigg/ \frac{\mathcal{B}(B^0 \rightarrow K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \rightarrow K^{*0} J/\psi \rightarrow e^+ e^-)}$$

A double ratio to minimize to the uncertainties from the lepton identification.
Measurement of $R(K^*)$

$$R_{K^*0} = \begin{cases}
0.66^{+0.11}_{-0.07} \text{ (stat)} \pm 0.03 \text{ (syst)} & \text{for } 0.045 < q^2 < 1.1 \text{ GeV}^2/c^4, \\
0.69^{+0.11}_{-0.07} \text{ (stat)} \pm 0.05 \text{ (syst)} & \text{for } 1.1 < q^2 < 6.0 \text{ GeV}^2/c^4.
\end{cases}$$

Result to be added to a collection of tensions measured in $b \rightarrow s \ell^+\ell^-$ transitions.
Measurement of $R(K^*)$

$$R_{K^*0} = \begin{cases} 0.66^{+0.11}_{-0.07} \text{ (stat)} \pm 0.03 \text{ (syst)} & \text{for } 0.045 < q^2 < 1.1 \text{ GeV}^2/c^4, \\ 0.69^{+0.11}_{-0.07} \text{ (stat)} \pm 0.05 \text{ (syst)} & \text{for } 1.1 < q^2 < 6.0 \text{ GeV}^2/c^4. \end{cases}$$

Result to be added to a collection of tensions measured in $b \rightarrow s l^+l^-$ transitions.
LHCb has been performing really well. Precision SM measurements. Observation of new states. We are observing some tensions… We are hopeful for a bright future.