Non linear field correction effects on the dynamic aperture of the FCC-hh

Cruz Alaniz, Emilia (CERN) et al.

29 August 2017

The European Circular Energy-Frontier Collider Study (EuroCirCol) project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 654305. The information herein only reflects the views of its authors and the European Commission is not responsible for any use that may be made of the information.

The research leading to this document is part of the Future Circular Collider Study

The electronic version of this FCC Publication is available on the CERN Document Server at the following URL:

<http://cds.cern.ch/record/2281162>
NON LINEAR FIELD CORRECTION EFFECTS ON THE DYNAMIC APERTURE OF THE FCC-hh

E. Cruz-Alaniz†, A. Seryi, John Adams Institute, University of Oxford, Oxford, UK
E. H. Maclean, R. Martin, R. Tomás, CERN, Geneva, Switzerland

Abstract

The Future Circular Collider (FCC) design study aims to develop the designs of possible circular colliders in the post LHC era. In particular the FCC-hh will aim to produce proton-proton collisions at a center of mass energy of 100 TeV [1]. Given the large beta functions and integrated length of the quadrupoles of the final focus triplet the effect of systematic and random non linear errors in the magnets are expected to have a severe impact on the stability of the beam. Following the experience on the HL-LHC this work explores the implementation of non-linear correctors to minimize the resonance driving terms arising from the errors of the triplet. Dynamic aperture studies are then performed to study the impact of this correction.

INTRODUCTION

The FCC-hh lattice features two high luminosity insertions and two special purpose experiments, just like the LHC. An illustration of the layout of the FCC-hh is given in Fig. 1. The two high luminosity insertions are located in the interaction regions A and G (IRA and IRG). The errors for the triplet of the FCC have been based on the magnetic imperfections of the triplet 60 errors on the arc dipoles (minimum DA= 30-85 σ) and with errors on the inner triplet but crossing angles off (minimum DA= 20 σ) [6]. However, studies with errors on the inner triplet and crossing angles on proved to be challenging [6] due to the fact that the resulting orbit made it more sensitive to errors. This works aims to address this issue by the use of different orbit correction techniques and the implementation of non linear correctors to compensate for non linear triplet errors.

DYNAMIC APERTURE STUDIES

DA studies were performed using SixTrack [7] on a thin-lens version of the FCC-hh lattice with \(\beta^* = 30 \) cm over \(10^5 \) turns with crossing angles on, 30 particles pairs per amplitude step of 2 σ, 5 angles and a momentum offset of 2.7e-4. The energy is 50 TeV and the normalised emittance is \(\varepsilon = 2.2 \mu m \).

Concerning the magnetic imperfections of the triplet 60 different realisations (seeds) have been used. These errors are given in the following form [8]:

\[
b_n = b_{nS} + \frac{\xi_U}{1.5} b_{nU} + \xi_R b_{nR},
\]

with \(b_{nS}, b_{nU} \) and \(b_{nR} \) referring to the main, uncertainty and random components, and both \(\xi_U \) and \(\xi_R \) are Gaussian distribution random variables cut at 1.5 a 3 σ respectively; \(\xi_U \) changes from seed to seed but remains the same for all magnets of the same class while \(\xi_R \) changes also from magnet to magnet. The magnetic field in the magnets is then given as:

\[
B_x + iB_y = B_{ref} \sum_{n=1}^{N} (b_n + ia_n) \left(\frac{x + iy}{R_{ref}} \right)^{(n-1)}.
\]

The errors for the triplet of the FCC have been based on the error table for the HL-LHC triplet [9] but adapted to the corresponding aperture of the FCC magnets. The nonlinear terms affecting the beam stability derived from these magnets will change with respect to the HL-LHC depending on the new aperture and \(\beta \) function at their location [10].

Several corrections are also used for the tracking studies: a chromatic and tune correction with the sextupoles and trim quadrupoles in the arc respectively, correction of the dispersion generated from the crossing angle (spurious dispersion)
and finally a coupling correction. In order to correct the spurious dispersion two different methods have been proposed: the HL-LHC like [11] and the SSC-like correction [12]. The first method has been adapted to the FCC [13] and corrects the dispersion by creating an orbit excursion using kickers while the second method performs the correction with a pair of normal and skew quadrupoles at both sides of the IR.

The minimum DA is shown in Fig. 2 as a function of the angle over 60 seeds for both spurious dispersion corrections. For the case of HL-LHC like correction a chromatic correction was used such that the sextupoles located in the orbit offset around IR are excluded, resulting in a minimum DA for all seeds of 1.9 σ. On the other side the SSC-like correction used a chromatic correction using all sextupoles obtaining a slightly better minimum DA of 2.3 σ. The low DA values show that the FCC-hh is more challenging than the HL-LHC, where the DA without non linear correctors was of 5 σ [8].

The resonance driving terms (RDTs) arising from the imperfections in the triplet can be given as [14]:

$$c(b_n; p, q, l, m) = \int_{IR} ds K_{n-1}(s) \beta_x^{p/2} \beta_y^{q/2} e^{\pm i(\mu_x - \mu_y)/(q-2m)}$$

$$c(a_n; p, q, l, m) = \int_{IR} ds K_{n-1}(s) \beta_x^{p/2} \beta_y^{q/2} e^{\pm i(\mu_x + \mu_y)/(q-2m)}$$

where K_{n-1} and K_{n-1}' corresponds to the normal and skew fields respectively, and p, q (even for b_n and odd for a_n), l and m denote integers such that $|p| + |q| = n$, $0 \leq 2l \leq p$ and $0 \leq 2m \leq q$. Given that at low β^* there is a π phase advance between the left and right part of the insertion the previous expressions reduce to [14]:

$$c(b_n; p, q) = \int_{IR} ds K_{n-1}(s) \beta_x^{p/2} \beta_y^{q/2} + (-1)^p \int_{IR} ds K_{n-1}(s) \beta_x^{p/2} \beta_y^{q/2}$$

$$c(a_n; p, q) = \int_{IR} ds K_{n-1}(s) \beta_x^{p/2} \beta_y^{q/2} + (-1)^p \int_{IR} ds K_{n-1}(s) \beta_x^{p/2} \beta_y^{q/2}$$

with q even for the normal fields (b_n) and odd for the skew fields (a_n).

The strategy now consists in including the non linear correctors into the previous integrals, weighted with the corresponding β functions, and adjusting the strengths such that the RDTs are set to zero. With one corrector located at each side of the two low β^* interaction points each pair of correctors has the possibility to correct the RDTs arising from two different resonance lines.

The RDTs to be corrected had been chosen with the proximity of their associate resonance lines to the working point. With the fractional part of the horizontal and vertical tunes in the FCC being 0.31 and 0.32 respectively the RDTs to be corrected are: $c(b_3; 1, 2)$, $c(b_3; 3, 0)$, $c(a_3; 0, 3)$ and $c(a_3; 2, 1)$ for order $n=3$, $c(b_4; 0, 4)$, $c(b_4; 4, 0)$, $c(a_4; 3, 1)$ and $c(a_4; 1, 3)$ for order $n=4$, and finally $c(b_6; 0, 6)$ and $c(b_6; 6, 0)$ for order $n=6$.

Strength Requirements

The strengths needed for the non linear correctors for all 60 seeds were calculated and are shown in Fig. 4. To make sure the strengths needed are within the limits of the available technology the maximum strength needed along all 60 seeds is shown in the first column in Table 1 and compared with the agreed specification of each corrector for the HL-LHC [8], shown in the second column. As can be seen from this comparison the values required for the correctors strengths

![Figure 2: Minimum DA as a function of the angle over 60 seeds for the HL-LHC like and SSC-like spurious dispersion corrections.](image)

NON-LINEAR CORRECTORS

In order to increase the minimum DA non-linear correctors have been added to the lattice to compensate for the errors in the triplet. These correctors were installed on the side of the triplet opposite to the IP, after the third quadrupole (Q3) and the skew quadrupole used for coupling correction. These correctors are installed on either side of the IR and with similar lengths as the ones considered for HL-LHC correctors. The location of the non-linear correctors with respect to other elements in the interaction region is illustrated in Fig. 3.

![Figure 3: Location of the non-linear correctors with respect to other elements in the interaction region, mainly the triplet quadrupoles (Q1, Q2 and Q3) and the interaction point.](image)
are within the margin of the specification by a factor of 3 or more.

Table 1: Maximum strength of the non-linear correctors compared to the specification.

<table>
<thead>
<tr>
<th>Corrector</th>
<th>Strength K_{n-1} [T/m^{n-1}]</th>
<th>Specification K_{n-1}^{max} [T/m^{n-1}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>b3</td>
<td>46.6</td>
<td>454</td>
</tr>
<tr>
<td>a3</td>
<td>164.5</td>
<td>454</td>
</tr>
<tr>
<td>b4</td>
<td>5353</td>
<td>25739</td>
</tr>
<tr>
<td>a4</td>
<td>4961</td>
<td>25739</td>
</tr>
<tr>
<td>b6</td>
<td>5.95e6</td>
<td>7.68e7</td>
</tr>
</tbody>
</table>

Impact on Dynamic Aperture

To assess the performance of these correctors, DA studies have been made using the same conditions and corrections presented in the DA studies section but with the corresponding calculations of Eqs. 5 and 6. For these results the HL-LHC like spurious dispersion was used. Figure 5 illustrates the minimum DA over all seeds and angles versus the non-linear correctors used. The benefits of including non-linear correctors show a clear increase of the minimum DA from 1.9σ (shown in Fig. 2) to 5.6σ when including a3 and b3 correctors, to 9.4σ when including also b4 and a4 correctors, and finally to 10.1σ including as well b6 correctors.

Thus, this work shows that the stability of the FCC-hh lattice relies on the accurate correction of the non-linear errors in the IR. Another method has been considered for the HL-LHC based on the direct compensation of the transverse map coefficients [15], and could also be considered for the FCC. Both strategies however require a magnetic model of the magnets. Based on the experience on the LHC, magnetic measurements during construction do not always provide a good description of the real machine, and therefore must be complemented by beam-based studies [16]; this task by itself can be very challenging and new methods are currently being studied [17].

CONCLUSIONS

The stability of the FCC-hh lattice with crossing angles on and errors in the inner triplet was studied via DA studies, resulting in a minimum DA of about 2σ. The FCC-hh presents then a more challenging case than for the HL-LHC where the corresponding DA was of 5σ. This work presented a solution to this problem by the implementation of non-linear correctors, resulting in an increase of the DA up to 10.1σ.

Therefore, the FCC-hh feasibility relies upon the accurate correction of high order multipolar errors in the interaction region area. The magnetic model needed for this procedure however, presents by itself a series of challenges; the work on the LHC combining magnetic measurements during construction and beam-based studies should then be followed closely to check on its reliability.

ACKNOWLEDGEMENTS

The authors of this paper would like to thank B. Dalena for her work on making it possible for the FCC-hh lattice to work on Sixtrack and A. Chancé for this work on the lattice integration.
REFERENCES

[7] SixTrack website, cern.ch/sixtrack-ng

