Hunting New Physics with ATLAS

Vasiliki A. Mitsou

for the ATLAS Collaboration

6th International Conference on New Frontiers in Physics
ICNFP 2017
17 – 29 August 2017, Kolymbari, Crete, Greece
Why going beyond the Standard Model?

- SM provides an excellent description of the experimental data so far
 - QCD and hadronic structure
 - precision EW physics
 - top quark
 - flavour physics
- yet... it does not provide an answer to:
 - hierarchy / fine tuning problem
 - matter-antimatter asymmetry
 - dark matter & dark energy
 - neutrino masses
 - unification of EW interactions & QCD
 - gravitation
 - more than one fermion generation

An extension of the Standard Model is needed
(some) ideas beyond Standard Model

[Diagram showing a matrix of Big Ideas and Big Questions]

- Multiverse
- SUSY
- Compositeness, Extra dimensions
- Extended Higgs Sector
- Top Partner
- W/Z'
- Minimal Dark Matter
- Hidden Sector

Big Questions:
- Dark Matter
- Origin of EWSB
- Naturalness
- Unification
- Origin of Matter
- Origin of Flavor
- New Forces
- Elementary vs Composite

???
ATLAS at the LHC

- **Spectacular LHC performance**
- **Run 2: 2015 – ongoing**
 - $\sqrt{s} = 13$ TeV
 - 2015-2016: ~ 40 fb$^{-1}$ pp collisions recorded by ATLAS
 - 2017: ~ 16 fb$^{-1}$ recorded so far
Beyond-SM searches strategy

① Pursue signature-driven analyses:
 ▫ resonances: dileptons, jets, photons, ...
 ▫ non-resonant: tails in kinematic distributions
 ▫ special particles: slow-moving, long-lived, ...
 ▫ ...

② Search for excess of events over the expected SM background
 ▫ in one or more *Signal Regions (SRs)*

③ If no significant excess is observed
 ▫ set cross-section upper limits
 ▫ interpret in specific models to obtain limits on masses, couplings, ...

☞ Background estimate: data-driven techniques for main; MC for smaller
 ▫ measurement with data in *Control Regions (CRs)*, extrapolated to SRs
 ▫ method validated in *Validation Regions (VRs)*

☞ Blind analysis: first define and validate analysis, then open signal box
Signatures probing models

- **Resonances**
 - dileptons: $Z' \rightarrow \ell\ell$, ...
 - $W' \rightarrow \ell\nu$
 - dibosons: WW, WZ, γγ, ...
 - top/bottom: VLQs
 - BSM Higgs, ...
 - leptons+jets: leptoquarks, ...
 - dijets

- **Non-resonant final states**
 - dileptons
 - leptons+jets
 - mono-X + E_T^{miss}, dark matter, ...
 - ...

- **Long-lived particles**
 - high ionisation
 - disappearing tracks
 - displaced lepton jets, vertices

- **SUSY-specific signatures**: $E_T^{\text{miss}} + X$
 - strong production
 - 3rd-generation squarks
 - electroweak production
 - ...

Emphasis on most recent results

Signature-based searches cover multitude of theoretical scenarios

- Pawel Bruckman’s talk
- Yoram Rozen’s talk
- Cristiano Sebastiani’s poster

See talks by:
- André Sopczak
- Shunsuke Adachi
- Nicolas Koehler
- Athina Kourkoumeli
Looking for resonances & tails in distributions

- Non-SUSY searches only presented here
- Detailed reviews for SUSY in other talks
Dileptons (1/3)

- **Selection**
 - 2 opposite-sign (OS) isolated electrons OR muons with $p_T > 30$ GeV

- **Background**
 - Drell-Yan (DY), diboson, top (pair & single)
 - DY fitted to data at Z-peak
 - fakes (QCD jets & W+jets) → data-driven matrix method

- **Reconstruction of dilepton invariant mass $m_{\ell\ell}$**

- Looking for narrow resonances OR broad excesses in the invariant mass distribution
 - Data consistent with SM expectation

36.1 fb$^{-1}$ @ 13 TeV

arXiv:1707.02424
Dileptons (2/3)

- **Z’ resonances**: spin-1 neutral gauge bosons
 - Sequential SM (SSM): Z’ with same couplings as SM Z
 - GUT models based on E_6 gauge group predict two additional U(1) gauge fields: Z'_ψ, Z'_χ
 - Observable as narrow resonances in dilepton invariant mass spectrum

- **Contact Interactions (CI)**
 - Probes quark and lepton compositeness, with binding energy scale Λ
 - Different chiral structures considered
 - Detectable as broad excess in dilepton invariant mass spectrum

arXiv:1707.02424

36.1 fb$^{-1}$ @ 13 TeV
Dileptons (3/3)

- **Minimal Z' models** are characterized by three parameters:
 - Z' boson mass
 - γ': strength of Z' boson coupling relative to SM Z
 - θ_{Min}: mixing angle between the generators of B-L (Baryon minus Lepton number) and the weak hypercharge gauge groups

<table>
<thead>
<tr>
<th>Model</th>
<th>γ'</th>
<th>$\tan\theta_{\text{Min}}$</th>
<th>Lower limits on $M_{Z'_{\text{Min}}}$ [TeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>cc</td>
</tr>
<tr>
<td>Z'_{X}</td>
<td>$\sqrt{\frac{11}{24}} \sin \theta_{\text{Min}}$</td>
<td>$-\frac{4}{5}$</td>
<td>3.7</td>
</tr>
<tr>
<td>Z'_{3R}</td>
<td>$\sqrt{\frac{3}{8}} \sin \theta_{\text{Min}}$</td>
<td>-2</td>
<td>4.0</td>
</tr>
<tr>
<td>Z'_{B-L}</td>
<td>$\sqrt{\frac{55}{12}} \sin \theta_{\text{Min}}$</td>
<td>0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

- Also obtained generic upper limits on visible σ in fiducial lepton p_T & η and mass-window for various widths *(not shown here)*

arXiv:1707.02424

36.1 fb\(^{-1}\) @ 13 TeV
Diphotons

- Search for heavy resonant and non-resonant BSM physics decaying into diphoton final states
- Event selection
 - ≥ 2 isolated photons with $E_T > 40$ GeV & 30 GeV
 - different kinematic selections applied for spin-0 vs. spin-2
 - narrow-width approximation (NWA) bump in $m_{\gamma\gamma}$
 - non-resonant: counting experiment for $m_{\gamma\gamma} > 2240$ GeV

\[\rightarrow \text{No significance excess observed up to diphoton masses of 2.7 TeV} \]

Limits set in various scenarios

- **Spin-0 resonance**: exclusion limits for NWA signal $\sigma \times \text{BR}(\gamma\gamma)$ range from 11.4 fb @200 GeV to about 0.1 fb @ 2.7 TeV
- **Spin-2 resonance**: Randall-Sundrum (RS) graviton with $k/M_{Pl}=0.1$ excluded below $m_{G^*}=4.1$ TeV
- **Spin-2 non-resonant**: lower limit on M_S placed between 5.7 TeV and 8.6 TeV on ADD model depending on formalism used and number of extra dimension assumed
Dibosons: $V' \rightarrow VH \rightarrow q\bar{q}(\ell)bb$ (1/2)

- Search for boosted heavy resonances decaying to VH in all-hadronic channel
 - final state composed of two large-R jets, J
 - narrow-width bumps at di-jet (m_{JJ}) invariant mass for $m_{JJ} > 1$ TeV
- Event selection
 - lepton veto; E_T^{miss} veto
 - ≥ 2 large-R jets with $p_T > 250$ GeV; leading $p_T > 450$ GeV
 - larger mass is H-jet; smaller is V-jet
 - W/Z and H mass window
- Background estimated by side band and/or no-b-tag

Data compatible with SM hypothesis
Largest deviation in ZH channel at $m_{JJ} \approx 3$ TeV with local (global) significance of 3.3σ (2.1σ)

arXiv:1707.06958
Dibosons: $V' \rightarrow VH \rightarrow q\bar{q}(\gamma)bb$

(2/2)

- Candidate signal models:
 - Heavy Vector Triplet (HVT) W' and Z'
 - Model A: comparable BRs to fermions and gauge bosons
 - Model B: suppressed couplings to fermions

- Upper limits on $\sigma \times \text{BR}$ set for W' and Z' resonances:
 - HVT Model B resonances excluded in mass range 1100 - 2500 GeV for WH, and 1100 - 2600 GeV for ZH
 - HVT Model A resonances excluded in mass range 1100 - 2400 GeV for WH, and 1100 - 1480 GeV and 1700 - 2350 for ZH

Note: there is a ~60% overlap of data between the WH and ZH selections, for both 1-tag and 2-tag regions

arXiv:1707.06958
Dibosons: $X \rightarrow WV \rightarrow \ell \nu q\bar{q}$

- Motivation:
 - Spin 0: Composite Higgs (ggF or VBF)
 - Spin 1: Heavy Vector Triplet (q\bar{q} or VBF)
 - Spin 2: RS graviton (ggF production)
- Consider both resolved (jj) and “merged” (J), if highly boosted, dijet system
- Events categorisation:
 - VBF or DY (includes ggF & q\bar{q})
 - (i) merged high purity (HP);
 (ii) merged low purity (LP); (iii) resolved
 - WW or WZ (overlap)
- Search for bump in $m(\ell vvjj)$ or $m(\ell vvJ)$ distributions

\Rightarrow No significance excess observed
\Rightarrow limits set in resonance masses for considered models

ATLAS-CONF-2017-051
Dibosons – summary

$\sigma \times BR$ upper limits for Heavy Vector Triplets decaying to dibosons for different final states

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/
Vector-Like Quarks (VLQs): $T \rightarrow Wb$

- VLQs proposed to cancel quadratic divergences in Higgs mass
- Predicted in Little/Composite Higgs
- Production: pair (QCD) or single (EW)
- Decays:
 - $T \rightarrow Wb / Zt / Ht$
 - $B \rightarrow Wt / Zb / Hb$

$T \rightarrow Wb$ analysis
- 1 lepton, MET, ≥ 3 jets, ≥ 1 b-jet
- ≥ 1 W-tagged large-R jet, no overlap with b-jet

Full event reconstruction by minimising $|\Delta m_T|$
- Profile likelihood fit to improve BG modelling
 - $\Delta R(\ell, \nu)$ & S_T cut to define SR/CR
 - discriminating variable: $m_{T,\text{lep}}$

36.1 fb$^{-1}$ @ 13 TeV

No significant deviation from SM expectation is observed
VLQs: $T \rightarrow Wb$ results

- Uncertainties
 - dominated by low statistics
 - main systematics: t & $t\bar{t}$ modelling

- Significantly improved limits w.r.t. Run I
 - $m_{T/Y} (BR_{Wb} = 100\%) > 1350 (782) \text{ GeV}$
 - m_T (singlet) > 1170 GeV
 - $m_{B/X} (BR_{Wt} = 100\%) > 1250 \text{ GeV}$
 - m_B (singlet) > 1180 GeV

![Graph showing experimental limits and expected limits for m_T versus $B_T = \mathcal{B}(T \rightarrow Wb)$ with expected and observed limits on $\sigma(pp \rightarrow T \rightarrow Wb + X)$ for 36.1 fb$^{-1}$ at 13 TeV.](image-url)
VLQ summary

• All decays of vector-like T quark considered: $W_b / Z_t / H_t$
• Vector-like B decays not yet fully covered: only W_t / H_b included
• Analyses make use of boosted decays at 13 TeV
... in a nutshell

ATLAS Exotics Searches - 95% CL Upper Exclusion Limits

Status: July 2017

<table>
<thead>
<tr>
<th>Model</th>
<th>(\ell, \gamma)</th>
<th>Jets(^\dagger)</th>
<th>(E_{\text{miss}}^\ell)</th>
<th>Limit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD G(\chi) (q/q)</td>
<td>0, 1, (q)</td>
<td>1 - 4 (</td>
<td>\geq 2</td>
<td>)</td>
<td>2 - 3</td>
</tr>
<tr>
<td>ADD non-resonant (\gamma\gamma)</td>
<td>2, 1</td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADD DBH</td>
<td>2, 2 (</td>
<td>\geq 2</td>
<td>)</td>
<td>2 - 3</td>
<td>5.9 TeV</td>
</tr>
<tr>
<td>ADD BH</td>
<td>2, 3 (</td>
<td>\geq 2</td>
<td>)</td>
<td>2 - 3</td>
<td>5.9 TeV</td>
</tr>
<tr>
<td>ADD BH multi Jet</td>
<td>2, 3, 4 (</td>
<td>\geq 2</td>
<td>)</td>
<td>2 - 3</td>
<td>5.9 TeV</td>
</tr>
<tr>
<td>RS1 G(\chi)</td>
<td>2, 1</td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulk RS G(\chi) (\rightarrow) WW (\rightarrow) (\ell\ell) (\gamma\gamma)</td>
<td>2, 1</td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2UED / RPP</td>
<td>1, 2 (</td>
<td>\geq 2</td>
<td>)</td>
<td>2 - 3</td>
<td>5.9 TeV</td>
</tr>
<tr>
<td>Extra dimensions</td>
<td></td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSM Z(\rightarrow) (\ell\ell)</td>
<td>2, 1</td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSM Z(\rightarrow) (\tau\tau)</td>
<td>2, 1</td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptophotic Z(\rightarrow) bb</td>
<td>2, 1</td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptophotic Z(\rightarrow) (\ell\ell)</td>
<td>1, 2 (</td>
<td>\geq 2</td>
<td>)</td>
<td>2 - 3</td>
<td>5.9 TeV</td>
</tr>
<tr>
<td>SSM WW (\rightarrow) (\ell\ell) (\gamma\gamma)</td>
<td>1, 2 (</td>
<td>\geq 2</td>
<td>)</td>
<td>2 - 3</td>
<td>5.9 TeV</td>
</tr>
<tr>
<td>HVT V(\rightarrow) WW (\rightarrow) (\ell\ell) model B</td>
<td>2, 1</td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVT V(\rightarrow) WH/ZH model B multi-channel</td>
<td>2, 1</td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRSM W(\rightarrow) (\ell\ell)</td>
<td>1, 2 (</td>
<td>\geq 2</td>
<td>)</td>
<td>2 - 3</td>
<td>5.9 TeV</td>
</tr>
<tr>
<td>LRSM W(\rightarrow) (\ell\ell)</td>
<td>1, 2 (</td>
<td>\geq 2</td>
<td>)</td>
<td>2 - 3</td>
<td>5.9 TeV</td>
</tr>
<tr>
<td>DM</td>
<td></td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scalar DM 1(^{\text{st}}) gen</td>
<td>1, 2 (</td>
<td>\geq 2</td>
<td>)</td>
<td>2 - 3</td>
<td>5.9 TeV</td>
</tr>
<tr>
<td>Scalar DM 2(^{\text{nd}}) gen</td>
<td>1, 2 (</td>
<td>\geq 2</td>
<td>)</td>
<td>2 - 3</td>
<td>5.9 TeV</td>
</tr>
<tr>
<td>Scalar DM 3(^{\text{rd}}) gen</td>
<td>1, 2 (</td>
<td>\geq 2</td>
<td>)</td>
<td>2 - 3</td>
<td>5.9 TeV</td>
</tr>
<tr>
<td>LO</td>
<td></td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy quarks</td>
<td></td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLO TT (\rightarrow) Ht+X</td>
<td>2, 1</td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLO TT (\rightarrow) Zt+X</td>
<td>2, 1</td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLO TT (\rightarrow) Wb+X</td>
<td>2, 1</td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLO BB (\rightarrow) Hb+X</td>
<td>2, 1</td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLO BB (\rightarrow) Wb+X</td>
<td>2, 1</td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLO QQ (\rightarrow) WgWg</td>
<td>1, 2 (</td>
<td>\geq 2</td>
<td>)</td>
<td>2 - 3</td>
<td>5.9 TeV</td>
</tr>
<tr>
<td>Excited fermions</td>
<td></td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRSM Majorana v</td>
<td>2, 1</td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higgs triplet H(\rightarrow) (\ell\ell)</td>
<td>2, 1</td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic monopoles</td>
<td></td>
<td>1 - 4</td>
<td>3.4 TeV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Only a selection of the available mass limits on new states or phenomena is shown.

\(^\dagger\)Small-radius (large-radius) jets are denoted by the letter \(\ell\) (\(J\)).

Reference

- ATLAS-PB-2016-04
- ATLAS-CONF-2017-051
- ICNFP 2017
- V.A. Mitsou
Long-lived particles

- Most recent results @ 13 TeV presented here
- Searches for supersymmetric particles
- Many more searches for non-SUSY are underway with 13 TeV data
Stable or metastable particles

- Long-lived decays of sparticles possible in several frameworks, including:
 - nearly conserved symmetry
 - e.g. long lived gluinos or squarks that hadronise before decaying → R-hadrons in Split SUSY
 - low coupling between the particle and the final state
 - e.g. weak R-parity violating (RPV) couplings in SUSY
 - mass degeneracy between the particle and the final state

- Depending on the lifetime, different detection techniques involving various objects: tracks, photons, leptons, ...

![Diagram showing different types of tracks and their lifetimes:](image)
Displaced vertices (1/2)

- Metastable particles decaying in the Inner Detector
 - predicted in models of RPV SUSY or split-SUSY
 - benchmark signal: gluino hadronising into an R-hadron

32.7 fb⁻¹ @ 13 TeV

- **Large-radius tracking**: re-running standard track and vertex reconstruction improves signal efficiency at large radii
- **Backgrounds**: instrumental and estimated from data
 - high track multiplicity hadronic interactions
 - DV in regions with high material density vetoed
 - merged DV extrapolated from low-n_{trk} region
- Background estimate validated in signal-depleted regions
Displaced vertices (2/2)

- SR defined as a DV with mass > 10 GeV and high track multiplicity (> 5 tracks)
- No event is observed in the SR, compatible with a bkg. expectation of 0.2±0.2 events

Limits are set on gluino R-hadrons as a function of masses and lifetime
- For a lifetime of 1 ns, gluino masses up to 2.2 TeV are excluded

32.7 fb⁻¹ @ 13 TeV
Disappearing track (1/2)

- Decays to invisible products in the Inner Detector
 - chargino and neutralino nearly degenerate, the soft pions in the decay are not reconstructed
 - for wino LSP generic prediction of ~160 MeV splittings, or lifetimes of ~0.2 ns ➤ 6 cm

- **Pixel tracklets (≡ pixel-only tracks):** 10× increase in acceptance over standard tracks for low lifetimes

- Backgrounds estimated by a simultaneous fit to the tracklet p_T distribution

36.1 fb$^{-1}$ @ 13 TeV

ATLAS-CONF-2017-017
Disappearing track (2/2)

• No significant excess is observed
• EWK production limits significantly improved at low lifetimes ($c\tau \lesssim 12$ cm)
 □ thanks to new insertable pixel B-layer (IBL) installed during long shutdown ($r \sim 3$ cm)
• Strong production: reaching $1.4\ (1.1)$ TeV in chargino mass for lifetimes of $1.0\ (0.2)$ ns

36.1 fb$^{-1}$ @ 13 TeV
Long-lived particles in SUSY - summary

8-TeV results on R-hadrons
Split SUSY with metastable $\tilde{g} \rightarrow g/qq \tilde{x}_1^0$

Summary 8-TeV & 13 TeV on disappearing track
Long lived chargino, $\tilde{x}_1^\pm \rightarrow \pi^\pm \tilde{x}_1^0$

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SUSY/
Summary

• Standard Model limitations imperatively call for Physics beyond it, extending and complementing it
• ATLAS has searched for physics BSM at TeV scale in a variety of signatures inspired by a multitude of theoretical scenarios
• No significant deviation from SM expectations observed so far
• LHC Run 2 new data may reveal hints of New Physics
 ▫ ATLAS is well-prepared to make the most of them
 ▫ analysis continuously improved with new trigger and/or reconstruction techniques

Continuously updated public results:
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
Thank you for your attention!