Production of deuterons, tritons, ³He nuclei and their anti-nuclei in pp collisions at √s = 0.9, 2.76 and 7 TeV

ALICE Collaboration

Abstract

Invariant differential yields of deuterons and anti-deuterons in pp collisions at √s = 0.9, 2.76 and 7 TeV and the yields of tritons, ³He nuclei and their anti-nuclei at √s = 7 TeV have been measured with the ALICE detector at the LHC. The measurements cover a wide transverse momentum (p_T) range in the rapidity interval |y| < 0.5, extending both the energy and the p_T reach of previous measurements up to 3 GeV/c for A = 2 and 6 GeV/c for A = 3. The coalescence parameters of (anti-)deuterons and ³He nuclei exhibit an increasing trend with p_T and are found to be compatible with measurements in pA collisions at low p_T and lower energies. The integrated yields decrease by a factor of about 1000 for each increase of the mass number with one (anti-)nucleon. Furthermore, the deuteron-to-proton ratio is reported as a function of the average charged particle multiplicity at different center-of-mass energies.

© 2017 CERN for the benefit of the ALICE Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

*See Appendix A for the list of collaboration members
Production of light nuclei and anti-nuclei in pp collisions

ALICE Collaboration

1 Introduction

The production of light nuclei and anti-nuclei has been measured in many experiments at energies lower than those of the Large Hadron Collider (LHC). Deuterons and anti-deuterons are copiously produced in heavy-ion collisions [1–10], but less abundantly in lighter particle collisions, such as pp [11, 12] and pp [13] collisions, photo-production γp [14] and e+e− annihilation at Y(1S) [15] and Z0 [16] energies. Measurements of heavier anti-nuclei, like anti-tritons and 3He nuclei, have only been reported in pA [17, 18] and AA collisions [10, 19–22].

The high luminosity provided by the LHC allows these measurements to be extended to higher energies and transverse momenta (pT) than in previous experiments, and provides in addition the possibility to detect for the first time heavier anti-nuclei than anti-deuterons in pp collisions. Many of these measurements have been explained as the result of the coalescence of protons and neutrons that are nearby in space and have similar velocities [23, 24], but this has not been experimentally tested in high pT regimes in small systems. On the other hand, statistical hadronization models [10, 25] have been successful in describing particle yields over a wide range of energies in AA collisions, with the chemical freeze-out temperature and baryochemical potential being constrained by measurements of particle ratios. In this sense, the deuteron-to-proton ratio could serve as a test for possible thermal-statistical behavior in pp collisions at LHC energies.

On a broader level, this subject may also have an impact on cosmology. Big-Bang Nucleosynthesis is the dominant natural source of deuterons [26] and in the absence of baryogenesis, one could assume that the same holds for anti-deuterons. These anti-nuclei and even heavier anti-nuclei can also be produced in pp and pA collisions in interstellar space, representing a background source in the searches for segregated primordial anti-matter and dark matter [27–29]. As it turns out, the low momentum characteristic yield of anti-nuclei at central rapidities (compared to forward) lie in an energy region which is best suited for identification by most satellite-borne (low magnetic-field) instruments, such as AMS-02 [27].

While the differential yields of deuterons in pp collisions at √s = 7 TeV have been reported in [10], this paper complements the previously published results by providing the corresponding measurements of anti-deuterons at the same collision energy. In addition, results for (anti-)deuterons at √s = 0.9 TeV and 2.76 TeV as well as for (anti-)tritons and 3He (anti-)nuclei at √s = 7 TeV are given. The paper is organized as follows: Section 2 gives a description of the experimental apparatus. Section 3 describes the analysis procedure of the experimental data along with the estimation of the systematic uncertainties. In Section 4, the distributions of (anti-)deuterons, (anti-)tritons and 3He (anti-)nuclei are presented. The integrated yields, the deuteron-to-proton ratios and the coalescence parameters, which relate the production of nuclei with those of the nucleons, are obtained in Section 5 and the summary and conclusions are presented in Section 6.

2 Experimental apparatus

ALICE [30, 32] is a multipurpose detector designed to study heavy-ion collisions at the LHC and it also has excellent capabilities to study light nuclei and anti-nuclei in pp collisions. The nuclei were identified using the central detectors: the Inner Tracking System (ITS), the Time Projection Chamber (TPC) and the Time of Flight detector (TOF). These detectors are located inside a solenoidal magnetic field with a strength of 0.5 T and cover the full azimuthal acceptance and the pseudo-rapidity range |η| < 0.9.

The ITS [33] consists of six cylindrical layers of position-sensitive detectors, covering the central rapidity region for vertices located in |z| < 10 cm, where z is the distance along the particle beam direction. The two innermost layers are Silicon Pixel Detectors (SPD), followed by two layers of Silicon Drift Detectors (SDD), while the two outermost layers are double-sided Silicon Strip Detectors (SSD). The ITS is mainly used for reconstruction of the primary and secondary vertices. It also helps to separate primary nuclei
from secondary nuclei via the determination of the distance of closest approach of the track to the primary vertex. The TPC [34], the main tracking component of ALICE, is a large drift detector with a low material budget to reduce multiple scattering and secondary particle production. In combination with the ITS, it is used to measure particle momenta. The TPC is also used to identify particles via their specific ionization energy loss with a resolution of 5% in pp collisions [35]. The TOF [36] detector is a large-area array of Multigap Resistive Plate Chambers covering the full azimuth $0 \leq \phi < 2\pi$ and $|\eta| < 0.9$, except the region $260^\circ < \phi < 320^\circ$ and $|\eta| < 0.12$ to avoid covering the Photon Spectrometer with more material. In pp collisions, it measures the time of flight of particles with an overall resolution of about 120 ps, allowing the identification of light nuclei and anti-nuclei with transverse momenta above 3 GeV/c, depending on the available data. The start time for the time of flight is provided by the T0 detector, with a time resolution of $\sim 40$ ps. The T0 consists of two arrays of Cherenkov counters, T0A and T0C, placed on opposite sides of the interaction point at $z = 375.0$ cm and $z = -72.7$ cm, respectively. If there is no T0 signal, the TOF detector is used to measure the start time when at least three particles reach the TOF [37].

Between the TPC and TOF there is a Transition Radiation Detector (TRD) [32] to discriminate between electrons and pions above 1 GeV/c. Only 7 modules out of 18 were installed for the pp run of 2010, leaving the major part of space between TPC and TOF free of additional material. The V0 detector [38], two hodoscopes of 32 scintillator cells each which cover the pseudo-rapidity ranges $2.8 < \eta < 5.1$ and $-3.7 < \eta < -1.7$, provides in combination with the SPD the trigger for inelastic pp collisions.

3 Data analysis

The pp events used in this paper were collected by the ALICE Collaboration during 2010 and 2011. The recorded integrated luminosity for each analyzed sample is $0.124$ nb$^{-1}$, $0.692$ nb$^{-1}$ and $4.20$ nb$^{-1}$ for the center-of-mass energies of $\sqrt{s} = 0.9$, 2.76 and 7 TeV, respectively.

3.1 Event and track selection

The pp events were triggered by requiring a hit in both sides of the V0, i.e., two charged particles separated by approximately 4.5 units of pseudo-rapidity, which suppresses single diffractive events. The presence of passing bunches was detected by two beam-pickup counters. Contamination from beam-induced background was rejected offline using the timing information of the V0. Additionally, a cut on the correlation between the number of SPD clusters and the number of small track segments (tracklets) in the SPD detector was applied. Furthermore, in order to maintain a uniform acceptance and to reduce beam-induced noise, collision vertices were required to be within 10 cm of the center of the detector in the beam direction and within 1 cm in the transverse direction. Pile-up events were reduced by requiring that more than three tracklets or tracks contribute to the reconstructed vertex. In case of multiple vertices which are separated by more than 0.8 cm, the vertex reconstruction with the SPD allows these events to be tagged as pile-up and hence not considered in the analysis. The events analyzed here consist mostly of non-single diffractive events, which represent a fraction of the total inelastic cross-section equal to $0.763^{+0.022}_{-0.008}$, $0.760^{+0.032}_{-0.028}$ and $0.742^{+0.050}_{-0.020}$ for $\sqrt{s} = 0.9$, 2.76 and 7 TeV [39], respectively. Those fractions were used to extrapolate the measurements to inelastic pp collisions assuming that the production of nuclei in single-diffractive events is not significant with respect to non-single diffractive events based on Monte-Carlo estimates (less than 3%).

For each track at least 2 track points were required in the ITS and 70 out of a maximum of 159 in the TPC. A pseudo-rapidity cut of $|\eta| < 0.8$ was also required to avoid edge effects. Tracks with kinks, typically originating from weak decays inside the TPC volume, were treated as two separate tracks and only the track pointing to the primary vertex was kept. The measurements are reported for the rapidity interval $|y| < 0.5$ and have been corrected for detector
efficiency based on the GEANT3 particle propagation code [40]. Track matching between the TPC and TOF detectors in GEANT3 was further improved by a data driven method based on a study of tracks not crossing the TRD material, resulting in a 6% difference. Since at low $p_T$ many nuclei in $|y| < 0.5$ are outside $|\eta| < 0.8$, their number was extrapolated using a Monte Carlo simulation where the rapidity distribution was approximated by a flat distribution.

In order to allow for a consistent comparison of the anti-deuteron-to-deuteron ratio across different center-of-mass energies with an identical GEANT version, a re-analysis of the deuteron differential yield at $\sqrt{s} = 7$ TeV is presented here. The results are found to be consistent with the previous measurements shown in [10] within the systematic uncertainties.

3.2 (Anti-)nuclei identification

The identification of nuclei and anti-nuclei is based on their specific energy loss in the TPC and the estimation of their mass with the TOF detector. Figure 1 shows the energy loss signal recorded by the TPC of different nucleus species versus the rigidity ($p_{\text{TPC}}/|Z|$), where $p_{\text{TPC}}$ is the momentum estimated at the inner wall of the TPC. Deuterons and anti-deuterons can be identified cleanly up to $p_{\text{TPC}} \approx 1.2$ GeV/c, which corresponds to a maximum $p_T$ of 1 GeV/c. For $p_T >$ 1 GeV/c a coincidence with a TOF signal was required, in addition to a $\pm 3\sigma$ cut around their expected energy loss in the TPC, extending the identification up to $p_T = 3$ GeV/c. For this, tracks were propagated to the outer radius of the TOF and if a hit was found close enough to the trajectory, the corresponding time of flight was assigned to the track. Then, the squared mass, $m^2 = p^2(t^2/l^2 - 1)$, where $p$ is the reconstructed momentum, $t$ the time of flight and $l$ the track length, was calculated. Figure 2 shows the squared mass distribution for several $p_T$ bins in the region of the anti-deuteron squared mass. The anti-deuteron signal is approximately Gaussian, centered at the deuteron squared mass and with an exponential tail on the high mass side. This exponential tail is also present in the signal of other particle species such as $\pi$, $K$ and $p$ and extends to the anti-deuteron squared mass, producing an exponential background. The signal was extracted by combining a Gaussian with an exponential tail and an exponential background (Figure 2).

Tritons and anti-tritons were identified by selecting tracks within $\pm 3\sigma$ of their expected energy loss in the TPC and by also requiring a match to a TOF hit. The minimum $p_T = 1.2$ GeV/c was chosen to be the same as for the $^3$He nuclei. Due to the small number of tritons, it was not possible to use the signal extraction procedure used for deuterons. In this case, the selected tracks were required to have an associated mass within $\pm 3\sigma$ ($\sigma \approx 0.05$ GeV/c$^2$) of the triton mass and the maximum $p_T$ was limited to 1.8 GeV/c. The result is shown in Figures 1 and 3 with 6 anti-triton candidates in the interval $1.2 < p_T < 1.8$ GeV/c.

Unlike deuterons and tritons, $^3$He and $^3\text{He}$ nuclei can be identified throughout the $p_T$ range with the TPC, since for nuclei with $|Z| = 2$ the energy deposition is well separated from particles with $|Z| = 1$. In total, 17 candidates for $^3$He nuclei were observed, based on the specific energy loss in the TPC (Figure 1), out of which 14 candidates were in the interval $1.2 < p_T < 6$ GeV/c and these were used in the measurements. Their identity was confirmed for those particles that were matched to a TOF hit (10 out of 14) with a mass measurement based on their time of flight as shown in Figure 3. A few $^3\text{He}$ nuclei (6 candidates) were also observed at the center-of-mass energy of 2.76 TeV.
Fig. 1: Energy loss in the TPC (dE/dx) of particles with negative charge versus the rigidity estimated at the TPC inner wall (p_{TPC}/|Z|). The solid lines represent the expected energy loss according to the parameterization of the Bethe-Bloch formula. The blue circles and squares are $^3$He nuclei and anti-tritons identified by the TPC only, and the orange crosses and the red diamonds are the anti-tritons and $^3$He nuclei, respectively, that were matched to a TOF hit.

Fig. 2: Squared mass distribution for tracks within $\pm 3\sigma$ of the expected energy loss for anti-deuterons in the TPC in several $p_T$ bins. The solid blue line is the global fit, the dashed line the background and the green line the anti-deuteron signal.
Production of light nuclei and anti-nuclei in pp collisions

ALICE Collaboration

Fig. 3: Mass distribution of anti-triton (crosses) and $^3\text{He}$ nucleus (diamonds) candidates obtained with the TOF detector as a function of the total momentum. The green and yellow bands represent 1 and 2σ intervals, respectively, around the expected $^3\text{He}$ mass (dashed line), obtained from the TOF resolution.

3.3 Secondary (anti-)nuclei

Secondary nuclei are copiously produced in spallation reactions induced in the detector material by the impact of primary particles. They are also produced in the decays of Λ-hypernuclei, with the π-mesonic decay of the (anti-)hypertriton being the most important contribution [41].

The distance of closest approach (DCA) of the track to the primary vertex in the transverse plane ($\text{DCA}_{xy}$) and along the beam direction ($\text{DCA}_z$) were used to distinguish and reduce the number of secondary nuclei. Since they are produced far away from the primary vertex, they have a broader and flatter $\text{DCA}_{xy}$ distribution than primary nuclei, which have a narrow $\text{DCA}_{xy}$ distribution peaked at zero, similar to anti-nuclei. Figure 4 illustrates the different $\text{DCA}_{xy}$ distributions for deuterons and anti-deuterons at low and high $p_T$. A positive $\text{DCA}_{xy}$ was assigned when the primary vertex was inside the radius of curvature of the track and a negative value in the opposite case. The number of secondary nuclei was greatly reduced by requiring $|\text{DCA}_{xy}| < 0.2$ cm and $|\text{DCA}_z| < 3$ cm, corresponding to a cut of ±10σ in the measured DCA resolution in the lowest $p_T$ bin.

The fraction of secondary nuclei with respect to primary nuclei was estimated with $\text{DCA}_{xy}$ templates from Monte Carlo simulations for each $p_T$ bin. The templates were fitted to the measured distribution with a maximum likelihood procedure which relies on a Poisson distribution and takes into account both the measured distribution and Monte Carlo statistical uncertainties [42]. This fraction was found to fall exponentially as a function of $p_T$ and subtracted from the measurements.

The production of anti-nuclei from interactions of primary particles with the detector material was neglected, since anti-nuclei exhibit a narrow $\text{DCA}_{xy}$ distribution peaked at zero (Figure 4). Due to the small production cross section of (anti-)hypernuclei in pp collisions, the feed-down contribution of (anti-)nuclei was not subtracted, but instead included as a systematic uncertainty.
3.4 Systematic uncertainties

Table 1 summarizes the values of the systematic uncertainties for the lowest and highest \( p_T \) bins. These uncertainties take into account the identification procedure, the track selection criteria, secondary nuclei originating in the detector material and from feed-down, the (anti-)nucleus–nucleus interactions simulated in GEANT and the material budget.

The identification procedure was affected by an uncertainty coming from the background and signal shapes at high \( p_T \), where the signal-to-background ratio was small. It was evaluated by changing the squared mass interval and extracting the signal with two different methods: one by using the procedure described in Section 3.2 and the other by counting the number of entries in the \( 1 < p_T < 1.4 \) GeV/c interval where the identification is unambiguous. For anti-tritons and \(^3\)He nuclei the identification was clean and the particle identification uncertainty was assumed to be negligible. Systematic uncertainties due to the track selection criteria were estimated to be less than 4% for nuclei and anti-nuclei by changing the conditions for selecting tracks.

The approximations made in the \( \text{DCA}_{xy} \) templates introduced an uncertainty on the removal of secondary nuclei originating in the detector material. A value of 4% was estimated for deuterons by replacing the simulated \( \text{DCA}_{xy} \) templates of primary deuterons with the measured \( \text{DCA}_{xy} \) distribution of anti-deuterons, which are not affected by contamination from secondary tracks. An uncertainty of \( \sim 20\% \) was estimated following a similar procedure for tritons and \(^3\)He nuclei.

The dominant feed-down contribution for (anti-)nuclei is the \( \pi \)-mesonic decay of (anti-)hypertritons [41]:
\[ ^3\Lambda H \rightarrow d + p + \pi^- , \] 
\[ ^3\Lambda H \rightarrow d + n + \pi^0 , \] 
\[ ^3\Lambda H \rightarrow t + \pi^0 , \] 
\[ ^3\Lambda H \rightarrow ^3\text{He} + \pi^- . \] 

In pp collisions, the \(^3\Lambda H \) cross section was estimated to be of the same order of magnitude as the \(^3\)He nucleus cross section [43]. However, the production cross section of deuterons is about \( 10^4 \) times greater than that of \(^3\)He nuclei, hence the contamination for (anti-)deuterons can be considered negligible. Additionally, the fraction of hypertritons which passes the track selection in the \(^3\)He (anti-nucleus) channel was estimated with a Monte Carlo simulation and is at most 35%. Assuming a similar value for the (anti-)triton channel and branching ratios of 27% and 13% [41], then less than \( \sim 10\% \) and \( \sim 6\% \) contamination is expected for \(^3\)He (anti-nuclei)
and (anti-)tritons, respectively.

The (anti-)nucleus–nucleus elastic and inelastic scattering uncertainty was evaluated by comparing the GEANT3 simulations with the data for two different experimental configurations: one using the detector portion in which the TRD modules were installed between the TPC and the TOF detector and another in which the TRD was not installed. The ratio between the number of (anti-)deuterons counted with the two different detector configurations is related to the number of (anti-)deuterons lost due to hadronic interactions. These ratios were compared with a GEANT3 simulation and a 6% uncertainty was estimated for the amount of nuclei lost in such processes. This comparison, however, was not feasible for (anti-)tritons due to the limited data and a 12% uncertainty was assumed. Unlike deuterons and tritons, the measurements of $^3$He (anti-)nuclei presented here only rely on TPC information, hence they are not affected by the TRD material in front of the TOF detector.

Another source of systematic uncertainty is the accuracy in the knowledge of the material budget. This uncertainty was estimated to be $\pm 3.4\%$ and $-6.2\%$ by comparing the material thickness estimated by analyzing photon conversions in the inner detectors with the material description implemented in the Monte Carlo simulations [44]. To propagate these uncertainties to the results, a Monte Carlo simulation was done in which the material density was varied by $\pm 10\%$ and linearly interpolating to match the uncertainties in the material budget. The result was below 3% at low $p_T$ and negligible at high $p_T$ for the different (anti-)nuclei.

The extrapolation of the measurements to inelastic pp collisions adds additional systematic uncertainties of $\pm 2.2\%$, $\pm 2.8\%$ and $\pm 5.0\%$ for the center-of-mass energies of 0.9, 2.76 and 7 TeV, respectively [39]. However, these uncertainties are not included in the figures as in previous related publications [10, 45–47].

<table>
<thead>
<tr>
<th>$p_T$ (GeV/c)</th>
<th>$d$</th>
<th>$\bar{d}$</th>
<th>$t$</th>
<th>$\bar{t}$</th>
<th>$^3$He</th>
<th>$^3$He</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8 – 3.0</td>
<td>negl. – 20%</td>
<td>negl. – 20%</td>
<td>negl.</td>
<td>negl.</td>
<td>negl.</td>
<td>negl.</td>
</tr>
<tr>
<td>1.2 – 1.8</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>1.2 – 1.8</td>
<td>4%</td>
<td>negl.</td>
<td>18%</td>
<td>negl.</td>
<td>20% – negl.</td>
<td>negl.</td>
</tr>
<tr>
<td>1.2 – 6.0</td>
<td>negl.</td>
<td>negl.</td>
<td>–6%</td>
<td>–6%</td>
<td>–10%</td>
<td>–10%</td>
</tr>
<tr>
<td>1.2 – 6.0</td>
<td>6%</td>
<td>6%</td>
<td>12%</td>
<td>12%</td>
<td>6%</td>
<td>6%</td>
</tr>
</tbody>
</table>

Table 1: Summary of the main sources of systematic uncertainties for the lowest and highest $p_T$ bins. Symmetric uncertainties are listed without sign for clarity.

4 Results

4.1 Deuterons and anti-deuterons

The invariant differential yields of deuterons and anti-deuterons have been measured in the $p_T$ range $0.8 < p_T < 3$ GeV/c (Figure 5) and extrapolated to inelastic pp collisions with the cross sections of reference [39]. At LHC energies, both nucleus species are produced with similar abundance since the anti-deuteron-to-deuteron ratio approaches one as the center-of-mass energy increases (Figure 6). The ratios are consistent with the $(\bar{p}/p)^2$ ratios extracted from references [48, 49] and hence in agreement with the expectation from simple coalescence and thermal–statistical models.
Production of light nuclei and anti-nuclei in pp collisions

Fig. 5: Invariant differential yield of deuterons (left panel) and anti-deuterons (right panel) in inelastic pp collisions (INEL) at $\sqrt{s} = 0.9$, 2.76 and 7 TeV. Systematic uncertainties are represented by boxes and the data are multiplied by constant factors for clarity in the figure. The lowest $p_T$-point for deuterons at $\sqrt{s} = 7$ TeV was taken from [10]. The dashed line represents the result of a fit with a Tsallis function (see Section 5.2 for details).

Fig. 6: Anti-deuteron-to-deuteron ratio ($d/d$) as a function of $p_T$ per nucleon in pp collisions compared with the ($\bar{p}/p$)$^2$ ratio (squares) at mid-rapidity ($|y| < 0.5$) [48, 49]. Boxes represent the systematic uncertainties and error bars in the ($\bar{p}/p$)$^2$ ratios are statistical and systematic uncertainties added in quadrature.
4.2 Heavier nuclei and anti-nuclei

A recorded luminosity of 4.2 nb$^{-1}$ allowed anti-tritons and $^3$He nuclei to be detected in pp collisions. Since the total number of observed candidates is small, the uncertainties were estimated as a central confidence interval (two-sided), using a coverage probability of 68.27% for a Poisson distribution. The resulting invariant yields for both anti-nucleus species are compatible in the $p_T$ range where measurements were possible (Figure 7). Some $^3$He nuclei were also observed in the highest $p_T$ bin, but since the production rate is very small, it was not possible to evaluate the contamination due to secondary $^3$He nuclei, and the bin was then excluded from this measurement. In contrast, $^3$He nuclei are not affected by this source of contamination and the three measurements are sufficient to determine the parameters of the Tsallis distribution to extrapolate the yields (see Section 5.2).

![Figure 7: Invariant differential yields of tritons and $^3$He nuclei (left panel) and their anti-nuclei (right panel) in inelastic pp collisions at $\sqrt{s} = 7$ TeV. Error bars and boxes represent the statistical and systematic uncertainties, respectively, and the dashed line the result of a fit with a Tsallis function (see Section 5.2 for details).](image)

5 Discussion

5.1 Coalescence parameter

Many measurements of light nuclei have been successfully explained as the result of the coalescence of protons and neutrons that are nearby in phase-space [23,24]. In this model, the production of a nucleus with mass number $A = N + Z$ is related to the production of nucleons at equal momentum per nucleon by

$$ E_A \frac{d^3N_A}{dp_A^3} = B_A \left( E_p \frac{d^3N_p}{dp_p^3} \right)^N \left( E_n \frac{d^3N_n}{dp_n^3} \right)^Z, \quad \vec{p}_A = \vec{p}_p = \vec{p}_n = \frac{\vec{p}_A}{A} \quad (1) $$

where $B_A$ is called the coalescence parameter. This parameter has been found to be constant at low transverse momentum in light-particle collisions [14,50]. In contrast, in AA collisions it has been reported that $B_A$ decreases with increasing centrality of the collision and for each centrality increases with $p_T$ [7,10].

Using equation (1) and taking the proton and anti-proton distributions from references [45,47], the coalescence parameter ($B_2$) was computed and it is shown in Figure 8. The resulting values for deuterons
and anti-deuterons are compatible and do not show any significant dependence on the center-of-mass energy within uncertainties. These measurements extend the $p_T$ reach up to three times beyond previous measurements in pp collisions extracted from the CERN ISR [11, 12, 51] (Figure 9).

Fig. 8: Coalescence parameter ($B_2$) of deuterons (solid circles) and anti-deuterons (hollow circles) as a function of $p_T$ per nucleon in inelastic pp collisions at $\sqrt{s} = 0.9$, 2.76 and 7 TeV. Statistical uncertainties are represented by error bars and systematic uncertainties by boxes.

To extract the $B_2$ from the CERN ISR, the anti-proton distribution was taken from [51] and the total cross section of $42.3 \pm 0.4$ mb from [52]. The distribution was also scaled by a factor of 0.69, estimated with an EPOS (LHC) simulation [43, 53], to take into account the feed-down contribution. Figure 9 also includes the $B_2$ parameter of anti-deuterons from $\gamma p$ collisions and deep inelastic scattering of electrons at HERA [14, 50] and $B_2$ from p–Cu and p–Pb collisions at Bevalac [1]. Our measurement reveals a $p_T$ dependence in $B_2$ not seen in previous experiments, which is significant given that the systematic uncertainties are correlated bin by bin.

This $p_T$ dependence can be reproduced with QCD-inspired event generators, such as PYTHIA 8.2 (Monash tune) [54] and EPOS (LHC), when adding a coalescence-based afterburner [43] that takes into account the momentum correlations between nucleons (Figure 10). The afterburner looks for clusters of nucleons among the final particles produced by the event generators and boosts them to their center-of-mass frame. If the momentum of each individual nucleon is less than a certain value a nucleus is generated. With the afterburner, a constant $B_2$ is recovered when selecting protons from one event and neutrons from the next event (event mixing), in agreement with the expectation of an uncorrelated distribution of nucleons (Figure 10). The $p_T$ dependence in $B_2$ is still present in the results from an alternate PYTHIA 8.2 (Monash tune) simulation with color reconnection turned off (Figure 10). Furthermore, a radial flow effect in $B_2$ at these low average charged multiplicities is also discarded by the EPOS (LHC) simulation with the afterburner, since this contribution only arises in high multiplicity events, starting from $dN_{ch}/d\eta > 15$ [53]. Thus, this $p_T$ dependence can be explained as a purely hard scattering effect, in contrast to AA collisions, where it is usually attributed to collective flow.
Production of light nuclei and anti-nuclei in pp collisions

**ALICE Collaboration**

---

**Fig. 9:** Coalescence parameter ($B_2$) of anti-deuterons in inelastic pp collisions at $\sqrt{s} = 7$ TeV (circles) compared with the values measured at lower energies in pp [11, 12], $\gamma p$ [14], ep [50] (squares and hollow circles) and in p–Cu and p–Pb collisions [1] (band at $p_T/A = 0$ GeV/c).

**Fig. 10:** Coalescence parameter ($B_2$) of anti-deuterons in inelastic pp collisions at $\sqrt{s} = 7$ TeV (circles) compared with EPOS (LHC), PYTHIA 8.2 (Monash tune) with and without color reconnection (CR) and an event mixing procedure with the afterburner (lines).

As in the case of anti-deuterons, the coalescence parameter ($B_3$) of $^3$He nuclei also exhibits a $p_T$ dependence (Figure 11), and can be reproduced with QCD-inspired event generators with a coalescence-based afterburner [43]. Moreover, low $p_T$ values of $B_3$ are compatible with those obtained in p–C, p–Cu and p–Pb collisions at Bevalac [1].
Fig. 11: Coalescence parameter ($B_1$) of tritons and $^3$He nuclei (left panel) and their anti-nuclei (right panel) in inelastic pp collisions at $\sqrt{s} = 7$ TeV. The Bevalac measurements in p–C, p–Cu and p–Pb collisions are not given as a function of $p_T$ and are shown as vertical bands at $p_T/A = 0$ GeV/c for comparison. Error bars and boxes represent the statistical and systematic uncertainties, respectively, and dashed lines the values obtained with EPOS (LHC) with the afterburner.

5.2 Integrated yields and deuteron-to-proton ratio

Unlike coalescence models, statistical hadronization models only provide predictions for integrated yields. In this case, the integrated yields of light nuclei and the deuteron-to-proton ratio can add additional constraints to these models and could therefore serve as a test for thermal-statistical behavior in small systems at LHC energies.

To find the integrated yields, the measurements were extrapolated to the unmeasured $p_T$ region with a statistical distribution that provides an exponential behavior at low $p_T$ and a power law behavior at high $p_T$ (Figures 5 and 7):

$$E \frac{d^3N}{dp^3} = gV \frac{m_T}{(2\pi)^3} \left(1 + \frac{q - 1}{T} \frac{m_T}{T}\right)^{\frac{q}{T}},$$

where $m_T = \sqrt{p_T^2 + m^2}$ is the transverse mass, and $gV$, $T$ and $q$ are free parameters. This distribution can be derived from the Tsallis entropy and gives good description of the data in pp collisions. It was preferred over the Levy-Tsallis used in previous work as it provides a more stable description of the measurements with a limited data set, as in the case of anti-deuterons for the center-of-mass energy of 0.9 TeV or the $^3$He nuclei.

The systematic uncertainties of the integrated yields ($dN/dy$) and mean transverse momenta ($\langle p_T \rangle$) were evaluated by shifting the data points up and then down by their uncertainties (i.e. assuming full correlation between $p_T$ bins). Additionally, the data points were shifted coherently, in a $p_T$-dependent way, within their uncertainties to create maximally hard and maximally soft $p_T$ distributions. The values of $dN/dy$ and $\langle p_T \rangle$ were reevaluated and the largest difference was taken as the systematic uncertainty. Table summarizes the resulting values for the different center-of-mass energies along with the extrapolation fraction due to the unmeasured $p_T$ regions. The uncertainty on the extrapolation was estimated by using additional distributions including the Levy-Tsallis and Boltzmann distributions.
change of the default fit function with respect to [10] leads to slightly different values for the obtained dN/dy and ⟨pT⟩ which are consistent within the respective systematic uncertainties. Figure 12 shows an exponential decrease of the dN/dy as a function of the mass number. The reduction of the yield for each additional nucleon is of about 1000.

![Graph showing the exponential decrease of dN/dy with respect to mass number.](image)

**Fig. 12:** Integrated yields (dN/dy) of anti-protons, anti-deuterons and ³He nuclei as a function of the number of anti-nucleons in inelastic pp collisions at √s = 7 TeV. The horizontal lines represent a fit with the function c₀Ac₁ based on equation (1).

<table>
<thead>
<tr>
<th>√s (TeV)</th>
<th>dN/dy</th>
<th>⟨pT⟩ (GeV/c)</th>
<th>Extr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>(1.12 ± 0.09 ± 0.09) × 10⁻⁴</td>
<td>1.01 ± 0.05 ± 0.05</td>
<td>50 ± 3%</td>
</tr>
<tr>
<td>d</td>
<td>2.76</td>
<td>(1.53 ± 0.05 ± 0.13) × 10⁻⁴</td>
<td>1.04 ± 0.02 ± 0.04</td>
</tr>
<tr>
<td>7</td>
<td>(2.02 ± 0.02 ± 0.17) × 10⁻⁴</td>
<td>1.11 ± 0.01 ± 0.04</td>
<td>41 ± 5%</td>
</tr>
<tr>
<td>0.9</td>
<td>(1.11 ± 0.10 ± 0.09) × 10⁻⁴</td>
<td>0.99 ± 0.07 ± 0.05</td>
<td>52 ± 7%</td>
</tr>
<tr>
<td>d̅</td>
<td>2.76</td>
<td>(1.37 ± 0.04 ± 0.12) × 10⁻⁴</td>
<td>1.04 ± 0.02 ± 0.03</td>
</tr>
<tr>
<td>7</td>
<td>(1.92 ± 0.02 ± 0.15) × 10⁻⁴</td>
<td>1.08 ± 0.01 ± 0.04</td>
<td>42 ± 5%</td>
</tr>
<tr>
<td>³He</td>
<td>7</td>
<td>(1.1 ± 0.6 ± 0.2) × 10⁻⁷</td>
<td>1.6 ± 0.4 ± 0.04</td>
</tr>
</tbody>
</table>

**Table 2:** Integrated yields (dN/dy) and mean transverse momenta ⟨⟨pT⟩⟩ for deuterons, anti-deuterons and ³He nuclei along with the extrapolated fraction (Extr.) due to the unmeasured pT regions. The first uncertainty is the statistical uncertainty and the second one the systematic uncertainty.

The integrated d/p and d̅/p̅ ratios were calculated from the integrated yields in Table 2 and references [46, 47] and are shown in Figure 13 as a function of the average charged particle multiplicity at mid-rapidity [59, 60]. The dN/dy values for pp collisions at the CERN ISR were computed following the same procedure described above and using the inclusive p distribution from [51] and the d distribution from references [11, 12]. The resulting d/p ratio was divided by 0.69 to account for the contributions of feed-down anti-protons, based on an EPOS (LHC) simulation [43]. Figure 13 suggests an increasing trend in this ratio with the average charged particle multiplicity in pp collisions, which is also supported by an EPOS (LHC) simulation with the afterburner, although at ISR energies the d/p ratio is strongly
influenced by the baryon number transport at mid-rapidity leading to a higher value than at LHC energies according to the model expectations.

When describing particle ratios such as the d/p ratio, the only free parameter of grand-canonical statistical hadronization models at LHC energies is the chemical freeze-out temperature. In the past, several attempts were made to extend their successful description of AA collisions to smaller collision systems such as pp. In particular, the canonical formulation describes the production of light flavor hadrons, including those with strangeness content \[25\]. While the p/π ratio is found to be comparable in pp, p–Pb, and Pb–Pb collisions \[47, 61\], indicating a comparable chemical freeze-out temperature among different systems, the d/p ratio in pp collisions at LHC energies is found to be two times lower than the average value in AA collisions. Since the strangeness-canonical formulation only influences the abundance of strange particles with respect to non-strange particles, it can not explain the observed results presented here.

Fig. 13: Integrated deuteron-to-proton (d/p) and anti-deuteron-to-anti-proton (\(\bar{d}/\bar{p}\)) ratios in inelastic pp collisions as a function of the average charged particle multiplicity for different center-of-mass energies. The average d/p ratio in AA collisions lies two times above the highest value in pp collisions (not shown). Dashed and solid lines represent the expected values from EPOS (LHC) with afterburner and the bands their uncertainties. The CERN ISR value is corrected by the contribution of feed-down anti-protons estimated with an EPOS (LHC) simulation.

6 Summary and conclusions

The invariant differential yields of deuterons and anti-deuterons in pp collisions at \(\sqrt{s} = 0.9, 2.76\) and 7 TeV and the yields of tritons, \(^3\)He nuclei and their anti-nuclei at \(\sqrt{s} = 7\) TeV have been measured in the rapidity range |y| < 0.5. The measurements cover the \(p_T\) range \(0.8 < p_T < 3\ GeV/c\) for (anti-)deuterons, \(1.2 < p_T < 1.8\ GeV/c\) for (anti-)tritons and \(1.2 < p_T < 6\ GeV/c\) for \(^3\)He (anti-)nuclei. This extends previous measurements by one order of magnitude in incident energies, a factor of three in \(p_T\) reach and includes the first ever measurements of anti-tritons and \(^3\)He nuclei in pp collisions.

The present measurements show no significant dependence of the coalescence parameter \(B_2\) on the center-of-mass energy from CERN ISR energies (53 GeV) to the highest LHC energy reported in this paper (7 TeV). Moreover, the values of both \(B_2\) and \(B_3\) are found to be compatible at low \(p_T\) with those obtained in pA collisions at Bevalac energies.
A previously unobserved $p_T$ dependence in pp collisions of the coalescence parameters $B_2$ and $B_3$ is also reported. The data are well described by QCD-inspired event generators when a coalescence-based afterburner is added to take into account the momentum correlations between nucleons. According to PYTHIA 8.2 (Monash tune) and EPOS (LHC) with the afterburner, this dependence can be explained purely as a hard scattering effect.

In combination with CERN ISR measurements, our results suggest an increasing trend in the $d/p$ ratio with charged particle multiplicity. While the values reported in central AA collisions are in agreement with a thermal model description of particle yields, the highest $d/p$ ratio reported in this paper is about half the thermal model value, therefore, a thermal-statistical description is disfavored in pp collisions at these low average charged particle multiplicities. Our measurements are expected to contribute to the understanding of the background from pp collisions for the observation of anti-deuterons and $^3\text{He}$ nuclei in cosmic ray experiments and to the estimation of the production rates of the next stable anti-nuclei in pp collisions.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science, Education and Sport and Croatian Science Foundation, Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research — Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Sciences, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the
South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba, Ministerio de Ciencia e Innovacion and Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Spain; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

References


Production of light nuclei and anti-nuclei in pp collisions


A The ALICE Collaboration

Production of light nuclei and anti-nuclei in pp collisions

ALICE Collaboration
Production of light nuclei and anti-nuclei in pp collisions

ALICE Collaboration


Affiliation notes
1 Deceased
2 Dipartimento DET del Politecnico di Torino, Turin, Italy
3 Georgia State University, Atlanta, Georgia, United States
4 Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine

Collaboration Institutes
1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2 Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
3 Institute of Theoretical Physics, University of Wrocław, Poland

23
Production of light nuclei and anti-nuclei in pp collisions

ALICE Collaboration

4 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
5 Budker Institute for Nuclear Physics, Novosibirsk, Russia
6 California Polytechnic State University, San Luis Obispo, California, United States
7 Central China Normal University, Wuhan, China
8 Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France
9 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
10 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
11 Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome, Italy
12 Chicago State University, Chicago, Illinois, United States
13 China Institute of Atomic Energy, Beijing, China
14 COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
15 Department of Physics, Aligarh Muslim University, Aligarh, India
16 Department of Physics, Ohio State University, Columbus, Ohio, United States
17 Department of Physics, Pusan National University, Pusan, Republic of Korea
18 Department of Physics, Sejong University, Seoul, Republic of Korea
19 Department of Physics, University of Oslo, Oslo, Norway
20 Department of Physics and Technology, University of Bergen, Bergen, Norway
21 Dipartimento di Fisica dell’Università ’La Sapienza’ and Sezione INFN, Rome, Italy
22 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
23 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
24 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
25 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
26 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
27 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
28 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
29 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
30 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
31 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
32 Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
33 European Organization for Nuclear Research (CERN), Geneva, Switzerland
34 Excellence Cluster Universe, Technische Universität München, Munich, Germany
35 Faculty of Engineering, Bergen University College, Bergen, Norway
36 Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
37 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
38 Faculty of Science, P.J. Šafářík University, Košice, Slovakia
39 Faculty of Technology, Buskerud and Vestfold University College, Tonsberg, Norway
40 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
41 Gangneung-Wonju National University, Gangneung, Republic of Korea
42 Gauhati University, Department of Physics, Guwahati, India
43 Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
44 Helsinki Institute of Physics (HIP), Helsinki, Finland
45 Hiroshima University, Hiroshima, Japan
46 Indian Institute of Technology Bombay (IIT), Mumbai, India
47 Indian Institute of Technology Indore, Indore, India
48 Indonesian Institute of Sciences, Jakarta, Indonesia
49 INFN, Laboratori Nazionali di Frascati, Frascati, Italy
50 INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy
51 INFN, Sezione di Bari, Bari, Italy
52 INFN, Sezione di Bologna, Bologna, Italy
53 INFN, Sezione di Cagliari, Cagliari, Italy
54 INFN, Sezione di Catania, Catania, Italy

24
In production of light nuclei and anti-nuclei in pp collisions, the ALICE Collaboration includes institutes from various countries. Among the institutions listed, some notable ones are:

- INFN, Sezione di Padova, Padova, Italy
- INFN, Sezione di Roma, Rome, Italy
- INFN, Sezione di Torino, Turin, Italy
- INFN, Sezione di Trieste, Trieste, Italy
- Inha University, Incheon, Republic of Korea
- Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France
- Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
- Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands
- Institute for Theoretical and Experimental Physics, Moscow, Russia
- Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
- Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Physics, Bhubaneswar, India
- Institut de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
- IRFU, CEA, Université Paris-Saclay, Saclay, France
- iThemba LABS, National Research Foundation, Somerset West, South Africa
- Joint Institute for Nuclear Research (JINR), Dubna, Russia
- Konkuk University, Seoul, Republic of Korea
- Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
- KTO Karatay University, Konya, Turkey
- Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
- Lawrence Berkeley National Laboratory, Berkeley, California, United States
- Moscow Engineering Physics Institute, Moscow, Russia
- Nagasaki Institute of Applied Science, Nagasaki, Japan
- National and Kapodistrian University of Athens, Physics Department, Athens, Greece
- National Centre for Nuclear Studies, Warsaw, Poland
- National Institute for Physics and Nuclear Engineering, Bucharest, Romania
- National Institute of Science Education and Research, HBNI, Jatni, India
- National Nuclear Research Center, Baku, Azerbaijan
- National Research Centre Kurchatov Institute, Moscow, Russia
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- Nikhef, Nationaal instituut voor subatomaire fysica, Amsterdam, Netherlands
- Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
- Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rež u Prahy, Czech Republic
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
- Petersburg Nuclear Physics Institute, Gatchina, Russia
- Physics Department, Creighton University, Omaha, Nebraska, United States
- Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
- Physics Department, Panjab University, Chandigarh, India
- Physics Department, University of Cape Town, Cape Town, South Africa
- Physics Department, University of Jammu, Jammu, India
- Physics Department, University of Rajasthan, Jaipur, India
- Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
- Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- Physik Department, Technische Universität München, Munich, Germany
- Purdue University, West Lafayette, Indiana, United States
- Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Rudjer Bošković Institute, Zagreb, Croatia
- Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
Production of light nuclei and anti-nuclei in pp collisions

ALICE Collaboration

109 Saha Institute of Nuclear Physics, Kolkata, India
110 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
111 Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
112 SSC IHEP of NRC Kurchatov institute, Protvino, Russia
113 Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
114 SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
115 Suranaree University of Technology, Nakhon Ratchasima, Thailand
116 Technical University of Košice, Košice, Slovakia
117 Technical University of Split FESB, Split, Croatia
118 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
119 The University of Texas at Austin, Physics Department, Austin, Texas, United States
120 Universidad Autónoma de Sinaloa, Culiacán, Mexico
121 Universidade de São Paulo (USP), São Paulo, Brazil
122 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
123 Universidade Federal do ABC, Santo Andre, Brazil
124 University of Houston, Houston, Texas, United States
125 University of Jyväskylä, Jyväskylä, Finland
126 University of Liverpool, Liverpool, United Kingdom
127 University of Tennessee, Knoxville, Tennessee, United States
128 University of the Witwatersrand, Johannesburg, South Africa
129 University of Tokyo, Tokyo, Japan
130 University of Tsukuba, Tsukuba, Japan
131 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
132 Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France
133 Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France
134 Università degli Studi di Pavia, Pavia, Italy
135 Università di Brescia, Brescia, Italy
136 V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
137 Variable Energy Cyclotron Centre, Kolkata, India
138 Warsaw University of Technology, Warsaw, Poland
139 Wayne State University, Detroit, Michigan, United States
140 Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
141 Yale University, New Haven, Connecticut, United States
142 Yonsei University, Seoul, Republic of Korea
143 Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany