PART I. EQUILIBRIUM PROPERTIES

1 THERMODYNAMIC PROPERTIES OF THE SOLID PHASE AND IN THE STATE OF PHASE EQUILIBRIUM

1.1 Equations for Thermodynamic Functions: The “High-Temperature” Region, Low-Temperature Region, Matching of Equations for “High” and Low Temperatures 4
1.2 Approximation of Experimental Data and Calculation of Thermodynamic Properties of Crystals 22
1.3 Phase Equilibrium along the Sublimation Curve 32
1.4 Pressure Dependence of the Melting Temperature 37
1.5 The Liquid-Vapor Phase Equilibrium 43

2 THERMODYNAMIC PROPERTIES IN THE GASEOUS STATE 53

2.1 Brief Analysis of Experimental Data 56
2.2 Experimental Study of Compressibility at Elevated Temperature and Pressure 69
2.3 Concerning Certain “Ideal” Curves of the Thermodynamic Plane of Real Gases 84
2.4 Second Virial Coefficients 96
2.5 On the Thermodynamic Similarity of Inert Gases 103
2.6 Computer Determination of Coefficients of the Virial Equation of State 111
3 EQUATIONS OF STATE FOR LIQUID NEON, ARGON, KRYPTON, AND XENON

3.1 Concise Information from the Theory of Liquid State
3.2 Experimental Data on Thermodynamic Properties
3.3 Analytic Description of ppT Data

PART II. NONEQUILIBRIUM PROPERTIES

4 DYNAMIC VISCOSITY AND THERMAL CONDUCTIVITY OF MONATOMIC GASES AT ATMOSPHERIC PRESSURE

4.1 Temperature Behavior of Viscosity
4.2 Temperature Dependence of the Thermal Conductivity
4.3 A Method of Correlation of Experimental Data on Viscosity and Thermal Conductivity

5 VISCOSITY OF MONATOMIC GASES AND LIQUIDS AT HIGH PRESSURES

5.1 Experimental Data on Viscosity at Moderate and High Pressure
5.2 Experimental Study of the Viscosity of Gases
5.3 Analysis of Methods of Calculating the Viscosities of Gases and Liquids
5.4 Equation for Calculating the Viscosity Coefficient of Monatomic Gases and Liquids

6 THERMAL CONDUCTIVITY OF MONATOMIC GASES AND LIQUIDS AT HIGH PRESSURE

6.1 Analysis of Experimental Data above Atmospheric Pressure
6.2 Equations for Calculating the Thermal Conductivity of Substances in the Gaseous and Liquid States

PART III. TABLES OF THERMOPHYSICAL PROPERTIES OF NEON, ARGON, KRYPTON, AND XENON

A NOMENCLATURE AND UNITS OF QUANTITIES IN TABLES I THROUGH XXVII

B METHODS USED IN CALCULATING DATA IN TABLES I THROUGH XXVII

C NEON DATA DISCUSSION

I Thermodynamic Properties of Crystalline Neon
II Thermodynamic Properties of Neon along the Solidification and Melting Curve