Abstract

Collision scheme with a large crossing angle is being very popular in design of future colliders in combination with the crab waist scheme. We discuss that a strong wake field with correlation between turns is induced by the beam-beam interaction. Recently strong-strong beam-beam simulations have shown a strong coherent instability in head-tail mode in collision with a large crossing angle. The wake field explains the mechanism of the coherent head-tail instability. Study of this instability is essential for collider designs based on a large crossing angle and crab waist scheme.

INTRODUCTION

A coherent head-tail instability has been seen in collision with a large crossing angle in strong-strong beam-beam simulation. We try to explain this beam-beam instability using wake field induced by the beam-beam interaction. When a positron bunch with a dipole moment $\mu^+(z')$ collide with an electron bunch, parts of the electron bunch (z_-) experiences a momentum kick as a function of z_- and $\rho^+(z')$. In collision with a large crossing angle, the kick depends on z and z'. We present two kinds of wake field in the beam-beam collision.

One is single beam approach, and second is two beams approach. In the single beam approach, a beam interacting with another beam regarded with a particle cloud. A wake field is obtained by the similar way with the electron cloud. The beam particle cloud interacts with the beam in many turns. The wake field contains a turn-by-turn correlation.

Figure 1: Sketch for evaluation of wake field induced by beam-beam interaction in single beam approach.

In second approach, a wake field describes correlation between two beams. The wake field is evaluated by calculating kick of positron/electron beam induced by a delta function like dipole moment of electron/positron beam. Figures 1 and 2 shows schematic views of the wake field models.

Figure 2: Sketch for evaluation of wake field induced by beam-beam interaction in two beam approach.

WAKE FIELD AND HEAD-TAIL INSTABILITY IN BEAM-BEAM COLLISION WITH A LARGE CROSSING ANGLE

K. Ohmi ∗, N. Kuroo 1, D. Zhou, KEK, Tsukuba, Japan
K. Oide, F. Zimmermann, CERN, Geneva, Switzerland
1 also at University of Tsukuba, Tsukuba, Japan

05 Beam Dynamics and Electromagnetic Fields
about in 5 turns. For \(t = 0 \), \(\Delta p_x(0, 0) = -5.93 \times 10^{-6} \) and \(\Delta p_x(z < 0, 0) \sim \pm 7 \times 10^{-9} \) correspond to the tune shift and short range wake in a bunch, respectively. The short range wake is 2 order smaller than that for \(t \geq 1 \). The momentum kick has a peak near \(z = 0 \) and oscillate turn by turn. Picture (b) depicts the peak momentum kick as function of turn. The frequency and quality factor are estimated to be \(\nu = 0.61 \) and \(Q = 5.7 \). The frequency is reasonable with considering the horizontal tune (\(\nu_x = 0.54 \)), the synchrotron tune (\(\nu_x = 0.018 \)) and beam-beam tune shift (\(\xi_x = 0.024 \)).

Linearity and translational invariance of the wake field is checked as shown in Figure 4. Wake field for the displacement 1, 2 and 3\(\sigma_x \) is plotted in Picture (a) Linearity for the displacement is satisfied well, though it is not perfect. Translational invariance, which guarantees the function form \(W(z - z') \), is also satisfied well: that is, the wake field shift for changing \(z' = 0, \pm 2.4, \pm 4.8 \) mm.

Figure 3: (a) Momentum kick of micro-bunches at \((z, t)\) for displacement (\(\Delta x = \sigma_x = 10^{-5} \) m) of a micro-bunch at \(z' = 0, t = 0 \), where \(n_{mb} = 100 \). Wake field is given by \(W_x(z, t) [m^{-1}] = -10^6 \Delta p_x(z, t) \). (b) peak momentum kick as function of turn. \((t)\).

Figure 4: (a) Wake field for the displacement 1, 2 and 3\(\sigma_x \). (b) Wake field \(W(z - z') \) for \(z' = 0, \pm 2.4, \pm 4.8 \) mm.

Figure 5: (a) evolution of \(\langle x^2 \rangle \) for various \(\beta_x^* \) after 1000 turn (\(\beta_x^* = 0.5 \) m), and (b) Particle distribution in \(z - \delta p/p - x \) phase space.

Simulation for beam instability is performed using the wake field. Particles (~ 10k) are generated with Gaussian distribution for the design emittance and beta in the 6 dimensional phase space. The kick induced by the wake field is calculated turn by turn using Eq.(1), where the beam dipole moments \(\rho_x(z', n') \) are recorded for the past several turns. After the kick (effective collision), coordinate of particles are multiplied by revolution matrix. Figure 5 (a) shows evolution of \(\langle x^2 \rangle \) for various \(\beta_x^* \). Exponential growth in \(\langle x^2 \rangle \) and \(\langle z^2 \rangle \) is seen. Note that this wake field model is linear for betatron amplitude. Actually since the beam-beam force is nonlinear and is saturates at several \(\sigma_x \).

Figure 5(b) shows particle distribution in \(z - \delta p/p - x \) phase space. Complex head-tail motion is seen clearly. The amplitude is huge, since linear wake model is used.

\(\Delta p_x(\Delta x, 0) = -\int_0^t W_x(z, \Delta x) \rho_x(z, \Delta x) dz'. \) \((3) \)

We consider that a part of positron bunch \(\rho_0(z, \Delta x) \delta(z, \Delta x) \) deviates \(\Delta x \).

\(\Delta p_x^*(\Delta x) = -W_x(z, \Delta x) \rho_0(z, \Delta x) \Delta x. \) \((4) \)
Effect of the deviation in the momentum kick is given by the beam-beam force,
\[\Delta p_x^{(-)} = \frac{N_x \rho_0 (z_+) r_e}{\gamma} (F(x_+ - x_+ - \Delta x) - F(x_- - x_+)). \]
(5)

For a transverse Gaussian beam, \(F(x, y) \) is represented by complex error function as follows,
\[F(x, y) = F_y + i F_x = \frac{2\sqrt{\pi}}{\Sigma} \left[w \left(\frac{x + iy}{\Sigma} \right) \right] \]
\[- \exp \left(-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2} \right) \]
\[w \left(\sigma_x y / \sigma_y + i \sigma_x y / \sigma_y \right) \]
\[\exp \left(-\frac{y^2}{2\sigma_y^2} \right) \]
where \(\Sigma = \sqrt{2(\sigma_x^2 - \sigma_y^2)} \). The beam sizes are convoluted ones of two beams \(\sigma_x^{(x)} = \sqrt{\sigma_x^{(x)+} \sigma_x^{(x)+}}, \)
\(\sigma_x^{(x)+} \approx \sigma_x^{(x)} \theta_c \)
for collision with the half crossing angle \(\theta_c \).
\[F_x (\langle x_+ - x_+ \rangle \theta_c - \Delta x, 0) - F_x (\langle x_+ - x_+ \rangle \theta_c, 0) \]
\[= -\frac{\partial F_x (x, 0)}{\partial x} \bigg|_{x = (z_+ - z_+)} \Delta x \]
(7)

The wake force is expressed by derivative of the beam-beam force,
\[W_x (z_+ - z_+) = \frac{N_x r_e}{\gamma} \frac{\partial F_x (x, 0)}{\partial x} \bigg|_{x = (z_+ - z_+)} \theta_c \]
(8)

For \(z_+ = z_- \), \(W(z) \) is the minimum value,
\[W_x (0) = \frac{N_x r_e}{\gamma} \frac{2}{\sigma_x (\sigma_x + \sigma_y)} \]
(9)

\[W(z) = 0 \] at \(z = \pm 1.3 \theta_c / \sigma_x \), and \(W \) is the maximum \(\approx 0.28 |W_x (0)| \) at \(z = \pm 2.2 \sigma_x / \theta_c \). Figure 6 shows the wake field. The wake field is also calculated by a numerical method. The wake linearly depends on \(\Delta x \) around \(\Delta x \leq 3 \sigma_{x,+} \).

Particle tracking simulation using the wake in Fig.6 was carried out. Figure 7 shows evolution of the horizontal bunch size and \(\langle xz \rangle \) correlation. The growth of the beam size is very fast (\(\sim 20 \) turns) and the head-tail phase of two bunches was the same. This behavior is consistent with a strong simulation.

Figure 8 shows distribution of electron/positron bunches after 230 revolutions. The distributions of two bunches are mostly identical.

CONCLUSION

Wake fields induced by beam-beam collision with a large crossing angle were evaluated. A head-tail instability is caused by the wake fields. The instability explains the strong simulation results.

ACKNOWLEDGEMENT

The authors thank fruitful discussions with Dr. D. Shatilov.

REFERENCES