Searches for top and bottom squarks with the ATLAS experiment

A. Rodriguez, On behalf of the ATLAS collaboration

Institut de Fisica d’Altes Energies

Universitat Autonoma de Barcelona

October 11, 2017
Overview

1. Introduction

2. Sbottom
 - Introduction
 - Background estimation
 - Results

3. Stop 0-lepton
 - Introduction
 - Signal Region overview
 - Background estimation
 - Results

4. Monojet analysis

5. Stop 1-lepton

6. Stop 2-lepton

7. Summary and Conclusions
Introduction

- Supersymmetry (SUSY) is a theoretical extension of the Standard Model
 - Would explain the hierarchy problem
 - Lightest supersymmetric particle is a Dark Matter candidate (neutralino)
 - Unifies Gravity with the Standard Model
- Third generation squarks (stop and sbottom) expected to be light
 - Could be produced in pairs in the LHC
 - Different final states and decay modes studied depending on SUSY parameters

SUPERSYMMETRY

Standard particles	SUSY particles

A. Rodriguez (IFAE (Barcelona))
Sbottom

- Latest ATLAS results published with 36.1 fb$^{-1}$ arXiv:1708.09266v1
- Direct production of sbottom pairs
- Decay through bottom or top quark and neutralino → final states with two b-jets and E_T^{miss}
- Optimized separately depending on $\Delta m = m_{\tilde{t}} - m_{\tilde{\chi}}$
- Two sets of Signal Regions
 - No leptons: Targeting decay through bottom quarks
 - One lepton: Targeting scenario with one or two tops
- Common signal region selection: 2 b-jets, $N_{jets} \leq 4$

All-hadronic

- **b0L-SRA**: Large Δm. Bins on main discriminant variable m_{CT}, with $m_{bb} > 200$, and $E_T^{miss} > 250$ GeV
- **b0L-SRB**: Intermediate Δm. Main discrimination through $m_{min}^{T}(jet_{1-4}, E_T^{miss}) > 250$ GeV
- **SRC**: Low Δm, sbottom pair produced in association with ISR jet. One jet with $p_T > 500$ GeV and $E_T^{miss} > 500$ GeV required

One-lepton

- **b1L-SRA**: Large Δm. Large E_T^{miss} and $E_T^{miss} / \sqrt{H_T}$ are required, and m_T, am_{T2} and m_{bb} are used for further discrimination
- **b1L-SRB**: Compressed mass scenario. $m_{min}^{T}(b, E_T^{miss})$
- **b1L-SRA300-2j**: Compressed mass. Similar to b1L-SRA but only the two b-jets are required, and $m_{eff} > 300$ GeV.
Background estimation

- Dedicated Control Regions are designed to constrain the main backgrounds in the Signal Region
- Independent CRs are designed for the one and zero-lepton SRs, except for Single Top
- A simultaneous profile likelihood fit is then performed on all the regions to estimate the background in the SRs

Control Regions

- $Z \rightarrow \nu\nu$ from a $Z \rightarrow \ell\ell$ Control Region
- $W+\text{jets}$ from a one-lepton CR
- $T\bar{T}$ from a 1-lepton region
- **Single Top** from a 1-lepton region

Good agreement found in all regions
Results

- No excess found over standard model expectation
- Limits set on the masses of the supersymmetric particles
Stop+0lepton

- Search for stop squark in fully hadronic final states
- Latest results published with 36.1 fb$^{-1}$ arXiv:1709.04183
- Main process targeted: direct production of stop pair decaying into top quark and neutralino
- Different SRs for the different areas of the Stop-neutralino mass plane
- Final state containing two b-jets, large jet multiplicity and large E_T^{miss}

Other processes with similar final states also considered
- Stop decaying to b quark and chargino
- Stop decaying to b quark and W boson
- Gluino mediated stop production where the stop decays into light quarks and neutralino
Signal Region overview

- Common selection for signal regions: \(\geq 2 \) b-jets, \(\geq 4 \) jets, and large \(E_T^{\text{miss}} \)
- Divide events into three categories depending on the top reconstruction \(\rightarrow \) mass of the reclustered \(R=1.2 \) jets

Top categories

- **TT**: Two reconstructed tops, \(m^{1,2}_{\text{antikt12}} > 120 \) GeV
- **TW**: One reconstructed top, one \(W \), \(m^1_{\text{antikt12}} > 120 \) GeV, \(60 < m^2_{\text{antikt12}} < 120 \) GeV
- **T0**: One reconstructed top, \(m^1_{\text{antikt12}} > 120 \) GeV, \(m^2_{\text{antikt12}} < 60 \) GeV

Different SRs depending on \(\Delta m = m_{\tilde{t}} - m_{\tilde{\chi}^0} \):

- **SRA**: Direct stop to top neutralino \(\rightarrow \) large stop-neutralino mass splitting
 - Boosted scenario: Large \(E_T^{\text{miss}} \)
- **SRB**: Direct stop to top neutralino \(\rightarrow \) small stop-neutralino mass splitting
 - Lower \(E_T^{\text{miss}} \)
- **SRC**: Direct stop to top neutralino \(\rightarrow \) stop-neutralino mass splitting \(\sim m_t \)
 - No categories, use of ISR variables to discriminate from \(\text{ttbar} \)

- **SRD**: Direct stop to \(b \) chargino
 - Higher jet \(p_T \), high reconstructed top mass

- **SRE**: Gluino mediated stop
 - Very boosted tops
Background estimation

- Dedicated control regions were designed to constrain the main backgrounds in the SR

Control Regions

- $Z \rightarrow \nu\nu+jets$ from a $Z \rightarrow \ell\ell+jets$ CR
- $W+jets$ from 1ℓ CR
- $t\bar{t}$ from 1ℓ CR (with dedicated ISR top CR for SRD)
- Single top from 1ℓ CR
- $t\bar{t}+Z$ from $t\bar{t}+\gamma$

- Showing $Z+jets$ CR (left), $W+jets$ CR (center), and $T\bar{T}$ CR (right)

- Good agreement found in all regions
Results

- No excess was found over the Standard Model expectation
- Constraints set on SUSY masses extending Run 1 limits
Monojet analysis

- Search for new phenomena in events with one energetic jet and large missing transverse momentum
- Last public results with 36.1 fb$^{-1}$

ATLAS-CONF-2017-060, paper in process of submission to JHEP
- Squark search among other interpretations
- Background estimation through dedicated CRs for main backgrounds
 - W+jets
 - Z+jets
 - Top

Selection

- One energetic jet ($p_T > 250$ GeV)
- Large E_T^{miss} (> 250 GeV)
- Maximum of four jets
- Shape fit in E_T^{miss} (10 bins)
Stop 1-lepton

- Last public results ATLAS-CONF-2017-037 with 36.1 fb$^{-1}$

- Five sets of Signal Regions optimized for the different areas of the $m_{\tilde{t}} - m_{\tilde{\chi}_1^0}$ plane, with several analysis techniques
 - Cut-and-count fit
 - Boosted Decision Tree (BDT) optimization
 - Shape fit (E_T^{miss}, $a m_{T2}$, $p_T^\ell / E_T^{\text{miss}}$)

- Man backgrounds estimated through Control Regions ($t\bar{t}$, Single Top, $t\bar{t} + Z$, W+jets)

- No excess found with respect to the Standard Model prediction
Stop 2-Lepton

- Last public results arXiv:1708.03247 with 36.1 fb$^{-1}$
- Three sets of Signal Regions designed for the two, three and four body decay modes of the stop pair
- Dedicated discriminating variables for each set
- Main background contributions normalized in dedicated Control Regions (Diboson, $t\bar{t}$, $t\bar{t} + Z$)
- No excess over SM found
Summary and Conclusions

- A big variety of analyses looking for third generation SUSY particles
- Exclusion limits widely improved the ones published in Run 1
- Improvements to the analysis techniques and new ideas ongoing for the full Run2 publications in 2019
- Still lots of possibilities to explore!