Offshell couplings and Higgs width in ATLAS and CMS

Roberto Di Nardo
on behalf of ATLAS and CMS collaborations

Workshop on the physics of HL-LHC, and perspectives at HE-LHC
CERN, Geneva 30 October -1 November 2017
Why study the Higgs boson off-shell production?

- High mass region of $H \rightarrow VV$ above the $2m_V$ threshold sensitive to the Higgs boson production through off-shell and background interference effects
 - characterize the properties of the Higgs boson through off-shell signal strength and off-shell Higgs boson couplings
 - Sensitivity to new physics that change interaction between the Higgs and SM particles in this region
- Unique way to probe New Physics in the Higgs domain at large momenta

Why the width? ($\Gamma_{H,SM}=4.2$ MeV)

- @ LHC only $\sigma \cdot BR$ can be measured
 - Γ_H cannot be estimated from the Higgs boson rates
- Direct and indirect approaches to constrain the Higgs width are nevertheless available
 - Worth investigating the HL-LHC (and experiment upgrades) potential to exploit all of them!
- Off-shell to on-shell cross section ratio \(\sim 8\% \) in the SM
- In the high mass region off-shell Higgs production and non resonant \(gg\rightarrow VV \) background (box diagram)

- Interference sizable and negative in SM
- Similar for \(qq\rightarrow VV+2j \) and VBF production
- Possible to obtain a sample with an arbitrary value of \(\mu_{\text{off-shell}} \) combining the SM expectations for \(gg\rightarrow (H^*)\rightarrow ZZ \), \(gg\rightarrow H^*\rightarrow ZZ \) and \(gg\rightarrow ZZ \)

\[
MC_{gg\rightarrow (H^*)\rightarrow ZZ}(\mu_{\text{off-shell}}) = \left(\frac{K_{H^*}(m_{ZZ})}{K_{gg}(m_{ZZ})} \cdot \frac{K_{gg}^{H^*}(m_{ZZ})}{\mu_{\text{off-shell}}} \right) \cdot MC_{SM}^{gg\rightarrow H^*\rightarrow ZZ}
\]

- LO (gg2VV/MCFFM) generator used for run1 results
- Large \(k \)-factors (when known) at NNLO
Offshell couplings

- Run1 results: combination of $WW \to l\nu l\nu$ and $ZZ \to 4l/l\nu l\nu$
 - Similar sensitivity for 4l and l\nu l\nu
 - Matrix Element discriminant exploited in the 4l, m_T used for l\nu l\nu
 - Channels with MET might be more challenging in HL environment
- $qq \to ZZ$ dominant bkg for driving channels
 - High precision needed for its prediction
- Systematics dominated by the theoretical uncertainties
 - QCD scales and PDF for $qq \to ZZ$ and $gg \to (H) \to ZZ$
 - experimental uncertainty subdominant
- Limits also on anomalous off-shell coupling

JHEP 09 (2016) 051
With the increase in statistics, it will be crucial to have the most accurate possible theoretical predictions.

- To reduce the dominant theoretical uncertainties on cross sections and shapes of the different components.
- Essential to move from LO to NLO MC development for \(gg \rightarrow (H^*) \rightarrow VV \) and \(gg \rightarrow VV \) processes (for less "QCDinclusive" analysis).
 - \(gg \rightarrow VV \) exact NLO available \(< 2m_t \), above approximate.

- Equally important is to improve precision of MC generators (and predictions) for the main \(qq \rightarrow VV \) background.
 - \(pp \rightarrow WW/ZZ \) at NNLO cross sections and NNLO MC development (+EW corrections).

- At HL-LHC \(\mu_{\text{offshell}} \) measurement sensitivity @ 20% without theoretical systematic uncertainties (ATLAS).

- HE-LHC will increase even more the relative contribution of the \(gg \) compared to \(qq \) at high \(m_{4l} \).
Higgs boson width: direct constraint

- Direct measurement using m_{4l} and m_{WW} spectra
 - Very few assumptions, lower precision, limited by experimental resolution (~1-2%)

- Exploited using Run1 and Run2 data to obtain upper limit on Γ_H
 - CMS:
 - upper limit on Γ_H combining $H\rightarrow ZZ\rightarrow 4l$ and $H\rightarrow WW$: $\Gamma_H < 1.7 \text{ GeV}$ at 95% CL (exp. 2.3 GeV)
 - Run2 (35.9/fb) using 4l : $\Gamma_H < 1.1 \text{ GeV}$ at 95% CL (exp. 1.6 GeV)
 - ATLAS
 - Run1 $H\rightarrow ZZ\rightarrow 4l$: $\Gamma_H < 2.6 \text{ GeV}$ at 95% CL (exp. 3.5 GeV for $\mu = \bar{\mu}$), similar limits using $H\rightarrow WW$

- >250 times larger wrt SM prediction
 - At HL-LHC a limiting factor will be the uncertainties on the resolution
 - Some caveats for WW due to interference with the bkg
Lower bound on Γ_H

- Possible to set a direct lower bound on the Higgs width using its lifetime
- In the SM the $\tau_H \sim 4.8 \times 10^{-8} \mu$m (far from experimental sensitivity)

- $H \to ZZ \to 4l$ suitable channel to extract the lifetime from the flight distance
 - Displacement between production (PV) and decay (4l) vertex

- Current Run1 limit (CMS)
 - $c\tau_H < 57 \mu$m at the 95% CL $\Rightarrow \Gamma_H > 3.5 \times 10^{-3} \text{eV}$ at 95% CL
- No extrapolation study available at the moment
 - Impossible to measure SM value also with 3/ab, nevertheless possible to improve sensitivity from highly boosted Higgs
 - Precise identification of the PV despite the high-pileup expected
Probing the Higgs width with Hyy

- $gg \to H \to yy$ and the continuum irreducible background $gg \to yy$ interfere
 - The imaginary component reduces the total yield by 2-3%
 - The real part is responsible for a non negligible mass shift, depending on Γ_H.
- Measuring this shift allows to indirectly constraint the total Higgs width.
 - Estimation of $\Delta m_H = -35 \pm 9$ MeV for Run1 ATLAS measurement ($\Gamma_H=4$MeV) - ATL-PHYS-PUB-2016-009
 - same categorization and detector response as used in the Run1 mass measurement.

2 Possible way to approach the measurement (linked to the reference mass)

- Use $m_{H,ZZ}$ as reference value
 - Shift in this channel negligible ($ggZZ$ small)
 - Drawback is detector calibration uncertainty from ZZ as well
 - Needed sensitivity down to ~ 70MeV
 - Strong reduction of photon scale uncertainty needed
 - Stat sensitivity to Δm_H ~ 40 MeV at HL-LHC
Probing the Higgs width with H->γγ

- Use the p_{TH} dependency of the shift
 - Constrained within the yy channel alone
 - Partial cancellation of calibration systematic uncertainties (energy scale)

- ATL-PHYS-PUB-2013-014
 - Evaluate the mass difference between $p_{TH} \leftrightarrow 30$ GeV
 - Systematics on the difference roughly estimated to be <100 MeV
 - Stat dominated, if in presence of SM width, limit on $\Gamma_H \sim <40-50 \Gamma_{SM}$

- An alternative could be the usage of the mass difference wrt pp->H+2j
- Presented in Phys. Rev. D 92, 013004, no projection study performed at the moment
 - H(->yy)+2jet provide good reference mass since cancellation between GGF and VBF
Indirect constraint on Γ_H from offshell production

- $\sigma_{\text{offshell}} \sim g_g^2 g_V^2$ does not depend on the total width Γ_H, σ_{onshell} does
 - In terms of coupling modifiers
 \[
 \frac{\sigma_{\text{off-shell}}}{\sigma_{\text{on-shell}}} = \mu_{\text{off-shell}} = k_{g,\text{off-shell}} \cdot k_{V,\text{off-shell}}
 \]
 \[
 \frac{\sigma_{\text{on-shell}}}{\sigma_{\text{on-shell}, \text{SM}}} = \mu_{\text{on-shell}} = \frac{k_{g,\text{on-shell}}^2 \cdot k_{V,\text{on-shell}}^2}{\Gamma_H / \Gamma_H^{\text{SM}}}
 \]

- Under the assumption of equal on-peak and off-peak coupling modifiers, limit on $\mu_{\text{off-shell}}$ can be reinterpreted, combined with $\mu_{\text{on-shell}}$, as limit on Γ_H
 - Strong assumption, $k_g(s)$ sensitive to possible new physics at higher mass scales
 - New physics which modify off-shell signal strength do not change bkg predictions
 \[
 \kappa_{g,\text{on-shell}}^2 \leq \kappa_{g,\text{off-shell}}^2 \kappa_{V,\text{on-shell}}^2 \]

- Latest experimental results (WW+ZZ in Run1 for ATLAS and CMS, 4l Run2 CMS):
 - $\Gamma_H < 22.7$ MeV @ 95%CL (<33 MeV exp.)
 - $\Gamma_H < 13$ MeV @ 95%CL (<26 MeV exp.)
 CMS Run1 JHEP 09 (2016) 051
 - 4l: $\Gamma_H < 4.1$ MeV @ 95%CL (<32 MeV exp.)
 CMS Run2, 12.9 fb$^{-1}$ CMS PAS HIG-16-033

- For HL-LHC most of the consideration done for $\mu_{\text{off-shell}}$ valid here as well
 - In this interpretation, the uncertainty on $\mu_{\text{off-shell}}$ dominates
 - $\sim 5\%$ precision achievable for $\mu_{\text{on-shell}}$ ZZ
 - Estimate using 4l alone by ATLAS (10% syst on $R_{H^*}^B$)
 \[
 \Gamma_H = 4.2^{+1.5}_{-2.1}$ MeV
 \]
 ATL-PHYS-PUB-2015-024
Conclusions

- With Run1 data, both CMS and ATLAS set first limits on the Higgs boson width and offshell production
 - First results using Run2 data also available

- For the Higgs width exploited both direct and indirect methods
 - Direct measurement will be challenging also with RUN2 and HL-LHC statistics
 - Indirect methods (under well-defined assumptions) provide already today limits @ 3 times the SM width
 - For several of the presented measurements, also limitations from the detector performances
 - Key point is to keep the performances at the same level as today (or better) also in a high pileup environment

- Off-shell production of the Higgs boson gives interesting extra information about the coupling structure of the Higgs boson
 - Very interesting measurement to perform @ HL-LHC
 - μ_{offshell} measurement sensitivity @ 20% level with 3000fb\(^{-1}\) (no theoretical uncertainties)
 - Very important the theoretical knowledge of the $gg\to(H^*)\toVV$ process and the backgrounds at higher orders in QCD
 - m_{ZZ} differential cross section measurement might be used as well, at the price of reduced sensitivity

- Will be interesting to explore also the reach for HE-LHC
Backup