$B \to D^{(*) \tau \nu}$ angular analysis

Greg Ciezarek,
on behalf of the LHCb collaboration

CERN

November 14, 2017
Introduction

- Lots of information beyond branching fractions
 - $B \to D^{(*)}\ell\nu$ matrix element fully described by 2 (4) kinematic variables
 - Tau polarisation
- For muonic $\mathcal{R}(D^*)$ analysis, we fit q^2, muon energy, missing mass squared
 - These partially describe matrix element \to we already have some information
- At present we assume SM kinematic distributions for $\mathcal{R}(D^*)$
- What additional information should we try to fit?
- What physics should we try to measure?
- Disclaimer: talk is almost entirely opinions, hopes and speculation
1. Introduction

Reconstruction ($\tau \rightarrow \mu \nu \nu$)

- Take $\langle \gamma \beta_z \rangle_B = \langle \gamma \beta_z \rangle_{D^*\mu}$
- Have approximation for rest frame with $\sim 15 - 20\%$ precision
- Can use this to calculate angles
Angular distributions

- What kind of resolution do we have on these angles?
Angular resolutions for $B \to D^* \mu \nu$

- Before taus, first look at angular resolution for $B \to D^* \mu \nu$ simulated events
Angular resolutions for $B \to D^*\tau\nu$

- Angular resolution for $B \to D^*\mu\nu$, $B \to D^*\tau\nu$ ($\tau \to \mu\nu\nu$)
- Tau decay results in loss of information
 - θ_ℓ and χ degraded
 - θ_D about the same $\to D^{*+}(\Lambda_c)$ polarisation related observables maybe a good first target
- These resolutions aren’t horrific \to we can make a measurement (with unknown sensitivity)
- These resolutions aren’t insignificant \to we need to account for them...
- Unfolding?
Unfolding isn’t fundamentally sound

- Unfolding doesn’t have good statistical properties
- See e.g. R. D. Cousins, S.J. May, Y. Sun “Should unfolded histograms be used to test hypotheses?”
 - Spoilers: probably not
 - Even before biases introduced by regularisation
 - Going in the other direction is a fundamentally well defined procedure
- Describing the full space will require $O(1000)$ bins \rightarrow not practical to unfold
- Uncertainty from background shapes difficult to reproduce accurately as a simple “background subtraction”
 - Often just ignored, we really cannot do this
Forward folding

- Don’t deconvolute data to theory, convolute theory to data
 - Best convolution: MC simulation
- This is exactly what we are already doing!
 - Can build on what we already have...
- Problem: model dependence - need to choose functional form
 - We will explore all possibilities
What can we do?

- Unfolding this seems a nightmare (as does background subtraction) → we are unlikely to publish corrected q^2 / angular distributions for signal
- But we can fit the data
 - Templates we fit already include effects of resolution, acceptance ...
- How to fit the data?
1. Introduction

Histogram expansion PDF

- What we want to do: reweight MC, reproduce histogram PDF
 - Event-by-event \rightarrow slow
- Weight for each event can be written as
 $\sum [\text{(Combination of fit coefficients)} \times \text{(Stuff invariant in fit)}]$
 - (or expand it until it can be..)
 - Loop through events once, for each term generate a histogram
 - Adding up histograms, scaled by fit coefficients, exactly equivalent to fully reweighted histogram
- Only need to sum up histograms \rightarrow fast
 - Already using for muonic $R(D^{(*)})$
What to measure

• First need to see if the excess holds up!
• Afterwards:
 • Does measured value change allowing NP operators?
 • Can enhancement be accommodated by theory uncertainty?
 • Pure vector/axial/tensor/...?
 • Or a combination of operators?
 • Can we fit the full matrix element?
Scalar form factor

- Trying to measure (pseudo)scalar form factor directly from $B \rightarrow D^{(*)} \tau \nu$ doesn’t seem so implausible
 - If no new (pseudo)scalar physics, and form factor agrees with prediction → model independent SM exclusion
 - Uncertainty from QED corrections?
- Testing SM only hypothesis → constrain other form factors from $B \rightarrow D^{(*)} \mu \nu$
- Not yet sure when we become sensitive enough
1. Introduction

Tau polarisation?

- With $\tau \rightarrow \mu \nu \nu$:
 - Some sensitivity to polarisation, but probably can’t disentangle from angular distribution?

- With $\tau \rightarrow \pi \pi \pi \nu$:
 - Combined $\pi \pi \pi$ momentum has little sensitivity to polarisation
 - But some information in substructure \rightarrow exploring this
 - Thesis of Laurent Duflot (LAL 93-09)

- Measurement of polarisation and angular information correlated
- Physics of polarisation and angular information correlated
- We should consider both together
2. Conclusion

Conclusion

- We should explore what we can measure from the $B \rightarrow D^{(*)} \tau \nu$ and $B \rightarrow D^{(*)} \mu \nu$ kinematic distributions
- Unfolding and background subtracting looks like a nightmare
- Forward folding looks viable
 - At the cost of having to choose parameterisation(s) to fit with
Angular resolutions for $B \rightarrow D^{*} \tau \nu \ (\tau \rightarrow \pi \pi \pi \nu)$

- Situation similar for $\tau \rightarrow \pi \pi \pi \nu$ mode
- Different reconstruction method:
 - Can reconstruct kinematics up to quadratic ambiguities using B and τ mass constraints + both vertex positions
 - Average over ambiguities
- Less information lost in tau decay, so Theta L a bit better?