Review of R measurements in LHCb in the hadronic channel

A R’s review

Victor Renaudin
on behalf of the LHCb collaboration
LAL, Université Paris-Sud

Second LHCb open semitauonic workshop
LFU: a hot topic

- The Standard Model predicts *Lepton Flavour Universality* (LFU): equal couplings between gauge bosons and the three lepton families.

- But, there are tensions between SM expectations and experimental results in:
 - **Semitauonic B decays**
 - $b \to sll$ transitions with for instance a 2.4σ deviation for the recent LHCb result on $R(K^{*0})$.

- Several SM extensions add new interactions with a stronger coupling with the third generation of leptons (charged Higgs, leptoquarks, ...).
Why using semitauonic B decays?

○ As tree level decays, they combine some nice features:
 □ Precise prediction from SM using ratios with shared systematics cancelling
 □ Abundant channel: BR(B → D*τν) ~ 1.2%
 □ Sensitivity to NP contributions

\[
R(D^*) = \frac{\mathcal{B}(\bar{B}^0 \rightarrow D^{*+}\tau^– \bar{\nu}_\tau)}{\mathcal{B}(\bar{B}^0 \rightarrow D^{*+}\mu^– \bar{\nu}_\mu)}
\]

○ Different hadronisation schemes are possible:
 □ D^*, D^0, D^+, D_s, Λ_c, J/Ψ
 □ Not only spectators quarks differ but also the spin:
 ○ 0: D^0, D^+, D_s
 ○ 1: D^*, J/Ψ
 ○ \(\frac{1}{2}\): Λ_c
Beyond $R(D^*)$

- Ongoing analyses using the hadronic τ decay:
 - $R(\Lambda_c^*): \Lambda_b \rightarrow \Lambda_c^* l \nu$
 - $R(J/\psi): B_c \rightarrow J/\psi l \nu$

- Other possible modes:
 - $R(D^+): B^0 \rightarrow D^+ l \nu$
 - $R(D^0): B^+ \rightarrow D^0 l \nu$
 - $R(D^{**}): B \rightarrow D^{**} l \nu$
 - $R(\Lambda_c^*): \Lambda_b \rightarrow \Lambda_c^* l \nu$ with $\Lambda_c^* \rightarrow \Lambda_c \pi \pi$
 - $R(D_s): B_s \rightarrow D_s l \nu$

- In a far future:
 - $B^0 \rightarrow p \tau \nu$
R\((X_c) \) recipe

- **Semileptonic decay without charged lepton** in the final state
 - \(\rightarrow \textbf{Zero} \) background from normal semileptonic decays!

- **No signal mass peak but several hadronic ones**
 - for instance, \(D^0 \rightarrow K3\pi, D^+ \rightarrow K\pi\pi, \ldots \)
 - It provides control on the various background channels

- Only one \(\nu \) at the \(\tau \) vertex
 - **Partial reconstruction can be applied** with good precision

- **Prompt 3\(\pi \) background is dominant**:
 - Specificities for each \(X_c \) but same tool to suppress it: \textit{vertex displacement}

- Double charm background is rejected using a BDT

- Extraction of the measurement using a **3D template fit in \(q^2 \), BDT output and \(t_{\tau} \)**
Double charm background

- The remaining background consists of X_b decays where the 3π vertex is transported away from the X_b vertex by a charm carrier: D_s, D^+ or D^0 (in that order of importance)
 - Total yield is $\sim 10x$ higher than SM expectation for signal
 - This background does not depend on the nature of X_c

- LHCb has three very good tools to limit this background:
 - 3π dynamics
 - Isolation criteria against charged tracks and neutral energy deposits
 - Partial reconstruction in both signal and background hypotheses

- A Boosted Decision Tree (BDT) discriminates double charm decays from signal
- The D_s decay model from the $R(D^*)$ analysis can be reused for every $R(X_c)$
$R(\Lambda_c)$

- Same strategy as $R(D^*)$, the goal is to measure:

$$R(\Lambda_c) = \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_\tau)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_\mu)}$$

- Precise prediction from LQCD: $R_{SM}(\Lambda_c) = 0.3328 \pm 0.0074^{\text{stat}} \pm 0.0070^{\text{syst}}$ \[1\]

- Probing LFU with a baryon with a different spin structure

- Use of $\Lambda_b \to \Lambda_c 3\pi$ as normalization channel

- Measurement of $R(\Lambda_c)$ on both Run1 and Run2 datasets with an error estimation of:
 - 4% for ϵ_{stat}
 - 6-10% for ϵ_{syst}
 - 7% of uncertainty due to normalization

\[1\]: [W. Detmold, C. Lehner, S. Meinel, PRD 92, 034503 (2015)]
\(R(\Lambda_c) \)

Comparison between \(\Lambda_c \tau \nu \) and \(D^* \tau \nu \) analyses:

- \(\Lambda_c 3\pi, \Lambda_c D_s \) peaks on MC and data:
 - data rates are comparable with \(D^* 3\pi \) and \(D^* D_s \)
 (lower \(\Lambda_b \) production but higher \(\Lambda_c \) visibility)

\[\Lambda_c \tau \nu, \mathcal{L} = 0.87 \text{ fb}^{-1} \]

<table>
<thead>
<tr>
<th>(\Lambda_c^+ 3\pi)</th>
<th>normal</th>
<th>inverted</th>
<th>6630 ± 93</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Lambda_c^+ D_s^{(*)})</td>
<td>inverted</td>
<td>495 ± 35</td>
<td></td>
</tr>
<tr>
<td>(\Lambda_c^+ D_s)</td>
<td>inverted</td>
<td>77 ± 10</td>
<td></td>
</tr>
</tbody>
</table>

\[D^* \tau \nu, \mathcal{L} = 1.0 \text{ fb}^{-1} \]

<table>
<thead>
<tr>
<th>(D^* 3\pi)</th>
<th>normal</th>
<th>inverted</th>
<th>6702 ± 89</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D^* D_s^{(*)})</td>
<td>inverted</td>
<td>404 ± 14</td>
<td></td>
</tr>
<tr>
<td>(D^* D_s)</td>
<td>inverted</td>
<td>67 ± 10</td>
<td></td>
</tr>
</tbody>
</table>

→ Same sensitivity expected
\(R(\Lambda_c) \)

Yields for each year of data taking per fb\(^{-1}\)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Lambda_c)</td>
<td>5709 ± 92</td>
<td>6749 ± 80</td>
<td>27509 ± 41</td>
<td>29182 ± 336</td>
<td>4.32 ± 0.07</td>
</tr>
<tr>
<td>(\Lambda_c D_s X)</td>
<td>202 ± 18</td>
<td>237 ± 11</td>
<td>962 ± 52</td>
<td>1056 ± 48</td>
<td>4.46 ± 0.29</td>
</tr>
<tr>
<td>(\Lambda_c D_s)</td>
<td>37 ± 7</td>
<td>40 ± 4</td>
<td>92 ± 12</td>
<td>110 ± 17</td>
<td>2.75 ± 0.51</td>
</tr>
<tr>
<td>(\Lambda_c 3\pi)</td>
<td>129 ± 18</td>
<td>154 ± 10</td>
<td>645 ± 49</td>
<td>627 ± 38</td>
<td>4.07 ± 0.36</td>
</tr>
</tbody>
</table>

All plots are using Splot technique to select \(\Lambda_c \).
The goal is to measure:

\[
R(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \tau^-)}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_\mu)}
\]

This analysis is using:
- $J/\psi \to \mu \mu$
- As there is no input from B factories, normalisation channel will be $B_c^+ \to J/\psi \mu X$

In LHCb-PAPER-2012-010 [1], the decay $B_c \to J/\psi D_s$ is observed with $D_s \to KK\pi$ with 3 fb$^{-1}$ of data (BR ~5 times larger than $D_s \to 3\pi$)

[1]: [Phys.Rev. D87 (2013) no.11, 112012]
In the $R(D^*)$ analysis:

- Background contribution from D^{**} states such as $D_1(2420)^0 \to D^+\pi^-$
- Upper limit in Run I, a measurement of $R(D_1(2420)^0)$ can be performed with Run II data.
- To illustrate, the up plot shows $m(D^*-\pi^+)-m(D^*)$ without a BDT cut (enriched in $D^{**}D_s$ events) and the bottom one shows the same distribution with a BDT cut (should contain a large fraction of $D^{**}\tau\nu$ events).
Normalisation

How to normalise hadronic analyses?

- **R(D*)**: Use of two external BR from PDG
 - $B^0 \rightarrow D^*3\pi$, 4% uncertainty
 - $B^0 \rightarrow D^*\mu\nu$, 2% uncertainty

What can we do with other modes?

- Direct normalisation using same strategy:
 - $\Lambda_b \rightarrow \Lambda_c 3\pi$, 14% uncertainty

- Use of inputs from LQCD to reuse $R(D^*)$ normalisation:
 - for instance: $K = \frac{\Gamma(\Lambda_b^0 \rightarrow \Lambda_c^+\mu\nu)}{\Gamma(B^0 \rightarrow D^+\mu\nu)}$ \[1\]

- Investigate other modes:
 - $\Lambda_b \rightarrow \Lambda_c D_s$
 - $B_c \rightarrow J/\psi D_s$
 - $\Lambda_b \rightarrow \Lambda_c \mu\nu$

With $D_s \rightarrow 3\pi$, closer topology to signal but low Branching fraction

[1]: Meinel's talk during first LHCb semitauonic workshop
Conclusion

After $R(D^*)$, more modes are coming

- Probing LFU with different spin structure
- $R(\Lambda_c)$ and $R(J/\psi)$ are ongoing
- Run1 and Run2 combinations will allow great statistical improvement

$R(D^*)$ tools and strategy can be applied for other modes:

- Yields of control channels in the $R(\Lambda_c)$ analysis are very similar
- Normalisation strategies for each mode have to be studied
Thank you for your attention!

Any question?
Backup
The LHCb detector

- **Single arm spectrometer** at LHC in the pseudorapidity range $2<\eta<5$
- Optimized to study hadron decays containing b and c quarks:
 - CP violation, rare decays, heavy flavor production;
- **Excellent vertex resolution** and separation of B vertices
- Good **momentum and mass resolution**
- Excellent **PID** capabilities (good separation $K-\pi$ and muon identification)