Radiation damage status of the ATLAS silicon strip detectors (SCT)
Poster at the 11th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors (HSTD11), Okinawa, Japan. 10-15 December 2017

Summary
- ATLAS SCT (~60m²) has been working well over 7 years at LHC.
- Radiation received is now up to 3x10¹³ cm⁻² in 1MeV n-eq fluence.
- Steady increase and annealing of leakage current have been observed in good agreements with two models.
- Part of sensors pass the type inversion point. Detailed studies continue.

Operational status
- 98.7% of the SCT elements are active as of Nov. 2017.

Radiation in 1MeV n-eq Fluence [cm⁻²]
- Accumulated radiation levels at 2017 end can be estimated using the FLUKA simulation [1] and delivered luminosity at LHC Point-1.

Full Depletion Voltage
- Full depletion voltage \(V_{FD} \) depends on the effective doping concentration \(N_{eff} \): \(V_{FD} = \frac{\xi}{N_{eff}} \).
- Radiation \(\phi \) creates acceptors and removes donors and \(N_{eff} \) changes as \(\phi \).
- Type inversion \(n \rightarrow p \) occurs and \(V_{FD} \) gets higher due to the anti-annealing effect.

Noise and Gain
- Noise and gain are stable from 2010(top) to 2017(bottom).
- Anomalous noise increases observed in endcap strips facing to the N₂ gap spaces.

Leakage Current
- Leakage current is proportional to the fluence \(\phi \),
 \[I_{leak} = a(T) \alpha \cdot V_{FD} \cdot \phi \]
- with temperature-sensitive annealing like
 \[\alpha(t) = \alpha_0 \exp(\frac{-t}{\tau_0}) + \alpha_1 \exp(\frac{-t}{\tau_1}) + \alpha_2 \exp(\frac{-t}{\tau_2}) + \alpha_3 \exp(\frac{-t}{\tau_3}) + \alpha_4 \exp(\frac{-t}{\tau_4}) \]

Evolution of leakage current of 4 barrel layers and model prediction

Taka Kondo (KEK) on behalf of the ATLAS Collaboration