Signals from fluorescent materials on the surface of silicon micro-strip sensors

D. Sperlichb, L. Poleya, I. Blocha, A. J. Bluec, C. Buttarc, V. Fadeyevd, C. Grayc, H. Lackerb, L. Rehnischb, M. Steglera

aDeutsches Elektronen-Synchrotron
bInstitut für Physik, Humboldt-Universität zu Berlin
cSUPA School of Physics and Astronomy, University of Glasgow
dCruz Institute for Particle Physics (SCIPP), University of California

Setup

- utilise a 15 keV X-ray beam focused to 5\(\mu\)m diameter
- beam edge on sensor
- scan in a 25\(\mu\)m \(\times\) 200\(\mu\)m grid
- 51\% absorption of X-rays per 300\(\mu\)m of silicon
- \(\sim\) 100\(\mu\)m high blob of glue on sensor
 - this glue is known to fluoresce under UV light
- sensor is connected to an Alibava readout system \cite{Marco-Hernandez2009}
- charge deposit was counted as hit if it is above 2.6 times the noise

Sensor

- 320\(\mu\)m thick silicon, n+-in-p doped
- 103 channels with 75.5\(\mu\)m strip pitch
- diced to 10000 \(\times\) 8580\(\mu\)m2
- only 400\(\mu\)m dead material between edge and first strip
- bias voltage 150 V
 - due to the very slim dicing higher bias was not possible
- tilted \(\sim\) 0.5\(^\circ\) relative to beam

Sensor cross section

- four scan lines with 25\(\mu\)m stepping
- edge of sensor shows \(\sim\) 250\(\mu\)m sensitive depth from top surface
- after 1.2 mm hit rate decreased by factor 10
- \(\sim\) 0.5\(^\circ\) tilt creates hits in four positions on top of sensor
- when beam hits glue, sensor detects some hits even though beam is above sensor
- the length of wirebonds for neighbouring strips is slightly different
 - this results in different noise and thus different signal cuts

Signal into sensor top surface

- three scan lines in 200\(\mu\)m steps parallel to the surface of the sensor
- first plot shows beam hitting the tilted sensor but not the glue directly
- factor 100 lower detection efficiency with given thresholds

References

Acknowledgements

The authors thank the DESY and Daresbury Laboratory, the University of Oxford and M. A. Malandain for providing advice, support and maintenance during the experiment. Individual groups and members have received support from BMBF (FIS), Germany, the UK’s Science and Technology Facilities Council, and USA Department of Energy, Grant DE-FG02-00ER41137. The research was supported and financed partly by and the EU-Fundamental Research Grant R0026680 “Novel Technologies for the New ATLAS Silicon Micro-Strip Detector at the High Luminosity LHC”.

We thank Diamond Light Source for access to beam line B16 (proposal number MT15979) that contributed to the results presented here. The authors would like to thank the staff of the KIT beam, especially Fran Papp, Oliver Fietz and Andy Malandain, for providing advice, support and maintenance during the experiment. Individual groups and members have received support from Daresbury Laboratory, the University of Oxford and M. A. Malandain for providing advice, support and maintenance during the experiment. Individual groups and members have received support from BMBF (FIS), Germany, the UK’s Science and Technology Facilities Council, and USA Department of Energy, Grant DE-FG02-00ER41137. The research was supported and financed partly by and the EU-Fundamental Research Grant R0026680 “Novel Technologies for the New ATLAS Silicon Micro-Strip Detector at the High Luminosity LHC.”