NO ESCAPE FROM THE SUPERNova!
MAGNETIC IMPRISONMENT OF DUSTY PINBALLS BY A SUPERNova REMNANT

Brian J. Fry1, Brian D. Fields1,2, and John R. Ellis3,4,5
1Department of Astronomy, University of Illinois, Urbana, IL 61801, USA
2Department of Physics, University of Illinois, Urbana, IL 61801, USA
3Theoretical Physics and Cosmology Group, Department of Physics, King’s College London, London WC2R 2LS, UK
4NICPB, Rävala pst. 10, 10143 Tallinn, Estonia
5Theory Division, Physics Department, CERN, CH-1211 Geneva 23, Switzerland

\textit{Draft version January 23, 2018}

\textbf{ABSTRACT}

Motivated by recent measurements of deposits of \isotope{60}{Fe} on the ocean floor and the lunar surface, we model the transport of dust grains containing \isotope{60}{Fe} from a near-Earth (i.e., within 100 pc) supernova (SN). We inject dust grains into the environment of a SN remnant (SNR) and trace their trajectories using a magnetohydrodynamic description. We assume the interstellar medium (ISM) magnetic fields are turbulent, and are amplified by the SNR shock, while the SN wind and ejecta fields are negligible. We examine the various influences on the dust grains within the SNR to determine when/if the dust decouples from the plasma, how much it is sputtered, and where within the SNR the dust grains are located. We find that Rayleigh-Taylor instabilities are important for dust survival, as they influence the location of the SN’s reverse shock. We find that the presence of a magnetic field within the shocked ISM material limits the passage of SN dust grains, with the field either reflecting or trapping the grains within the heart of the SNR. These results have important implications for \textit{in situ} \isotope{60}{Fe} measurements, and for dust evolution in SNRs generally.

KCL-PH-TH/2018-01, CERN-TH/2018-003

\section{1. INTRODUCTION}

Supernovae (SNe) are some of both the most destructive and creative events in the universe. A SN explosion blasts apart a massive star, and its outward propagating shock wave shatters dust grains floating in the interstellar medium (ISM). However, the explosion also leads to the formation of a new compact object, creates heavy elements beyond iron and nickel, and, as the SN remnant expands, new dust grains condense from within the ejecta. This clash of simultaneously destroying and creating dust raises the question whether SN are net producers or demolishers of dust.

Looking at another facet of SNe: they are estimated to occur at a rate of 1 – 3 per century within the Milky Way (e.g., Adams et al. 2013 and references therein) and, given the size of the Milky Way, this suggests that one (probably more) has occurred close enough to have produced detectable effects on Earth. These effects could range from delivery of SN material onto the Earth’s surface to biological effects. Studies of the possible biological effects of a near-Earth SN have a long history in the literature (e.g., Shklovskii 1969; Alvarez et al. 1980; Ellis & Schramm 1995; Melott et al. 2017), but the delivery of SN material onto Earth has only recently been examined, first by Ellis et al. 1996 (see also Korschinek et al. 1996), who suggested looking for long-lived radioactive isotopes ($\tau_{1/2} \sim$ Myr) such as \isotope{60}{Fe} and \isotope{244}{Pu}, whose presence would constitute direct evidence of such an event, since these isotopes are not manufactured within the Solar System and any pre-solar isotopes would have decayed by today.

The first evidence for such extra-solar radioisotopes was found by Knie et al. (1999) in a sample of ferromanganese (Fe-Mn) crust from Mona Pihoa in the South Pacific. Knie et al. used accelerator mass spectrometry (AMS) to find an anomaly in \isotope{60}{Fe} concentration that suggested that a SN occurred near Earth sometime within the last 5 Myr (the time within this range could not be specified). This study was later confirmed by Knie et al. (2004) using a different Fe-Mn crust sample from the equatorial Pacific Ocean floor, which found a distinct signal in \isotope{60}{Fe} abundance ~ 2.2 Myr ago. Later, Fitoussi et al. (2008) also found a \isotope{60}{Fe} signal in the Fe-Mn crust, but analysis of sea sediment samples from the northern Atlantic Ocean found no clear signal. Fitoussi et al. noted several reasons for the discrepancy, including variations in the background and differences in the uptake efficiencies between the Fe-Mn crust and sediment, or a signal duration much longer (and hence diluted) than the then-expected timescale of \sim few kyr. Subsequently, results from Eltanin sediment samples from the southern Indian Ocean were reported in Feige (2014), confirming the Knie et al. (2004) Fe-Mn crust detection in these sea sediment samples. Most recently, Wallner et al. (2016), using AMS but in a different laboratory and with different samples, also found \isotope{60}{Fe} in Fe-Mn crusts and nodules, confirming the $2 - 3$ Myr signal but also reporting evidence for a second signal at $\sim 6 - 8$ Myr. Wallner et al. (2016) also detected \isotope{60}{Fe} in several deep-ocean sediments, again finding the earlier signal, while measuring a deposition timescale of ≈ 1 Myr, consistent with the
Fitoussi et al. (2008) result. Ludwig et al. (2016) detected 60Fe in sediments by isolating the isotope from iron-bearing microfossils; they confirmed the deposition timescale ~ 1 Myr.

We note also that cosmic-ray studies by Rachellie et al. (2015) and Savchenko et al. (2015) found a signature in the proton cosmic ray spectrum suggesting an injection of cosmic rays associated with a SN occurring ~ 2 Myr ago, and the discovery of 60Fe in cosmic rays by Binns et al. (2016), suggest a SN origin within the last ~ 2.6 Myr located $\lesssim 1$ kpc of Earth, based on the 60Fe lifetime and cosmic ray diffusion. Additionally, lunar regolith samples (Cook et al. 2009; Finiani et al. 2012; 2014; 2016) have also shown an excess of 60Fe, although only the presence of an excess is detectable, not the precise arrival time or fluence (Feige et al. 2013), because of the nature of the regolith. However, Fry et al. (2016) suggested the use of lunar regolith radioisotope distributions with lunar latitude as an “antenna” to find the direction to the source of the 60Fe material.

Many studies have thus confirmed the 2 – 3 Myr 60Fe signal, using a variety of sampling techniques from around the Earth and on the Moon. All sediment studies are consistent with a ~ 1 Myr deposition time. It is thus well-established that (at least one) recent near-Earth SN deposited its ejecta on the Earth and Moon. On the other hand, different papers have reported fluences that have varied by an order of magnitude. The study by Fry et al. (2016) found that terrestrial atmospheric and oceanic processes could explain such differences in the fluence values between these studies, including the weak signal in the Fitoussi et al. sediment sample.

The possible nucleosynthesis site of the 60Fe material was most thoroughly examined by Fry et al. (2015), who considered all known astrophysical sources of 60Fe (including core-collapse SNe, neutron-star mergers and thermonuclear/Type Ia SNe). They found that core-collapse SNe are excellent candidates; in particular they found that an Electron-Capture SN (ECSN) arising from $\approx 10^{-5} M_\odot$ (\approx“⊙” refers to the Sun) to be the most likely progenitor. However, they were not able to rule out completely a Super Asymptotic Giant Branch (SAGB) star with a ZAMS mass $\approx 6.5 – 9 M_\odot$ as a possible source, based on nucleosynthesis criteria alone. For this work we will assume that the 60Fe source is a core-collapse SN, and we will highlight the ECSN case.

With regards to the location of the 60Fe-producing SN, Benitez et al. (2002) suggested that the source event occurred in the Sco-Cen OB association. This association was ~ 130 pc away at the time of the 60Fe-producing event, and its members were described in detail by Fuchs et al. (2006); Breitschwerdt et al. (2012; 2016); Peige et al. (2016); Peige et al. (2017); Schureich et al. (2017) have modeled the formation of the Local Bubble and used hydrodynamic simulations to model SNe occurring within the Sco-Cen association and track the 60Fe dust entrained within the blast. Comparably, Sørensen et al. (2017) examined SN activity in open clusters within 1000 pc of Earth over the past 35 Myr and found several passing within 200 pc of Earth. Marnajek (2016) suggested that the Tuc-Hor group, which was within ~ 60 pc of Earth at the time of the 60Fe-producing event, could have provided an ECSN, based on the masses of the current group members. Hyde & Pecaut (2017) considered both the Sco-Cen and Tuc-Hor sites and found that Tuc-Hor could be the site of either the 2 – 3 or 6 – 8 Myr ago events, but argued that the 2 – 3 Myr ago event arose from the Upper Centaurus Loop component of Sco-Cen, assigning the earlier event to Tuc-Hor.

With regard to the deposition of SN 60Fe on Earth, Fields et al. (2008) used hydrodynamic models to show that for plausible SN distances, the SN remnant plasma cannot penetrate the Solar Wind to 1 AU. However, SN radioisotopes including 60Fe are generally in refractory elements that readily form dust (Benitez et al. 2002). Athanassiadou & Fields (2011) and Fry et al. (2016) showed that SN material in the form of dust can have sufficient mass and velocity to overcome the Solar Wind and reach Earth. The 60Fe detections thus imply that at least some SN iron was condensed into dust grains, and survived passage to the Solar System while still retaining high enough mass and velocity to pass within 1 AU of the Sun. In the broader context of the nature of SNe, this raises the following question: How can a SN, which is quite proficient at destroying dust, transport dust material effectively across light-years of interstellar space to the Solar System without destroying it?

Many studies have examined general dust processing (e.g., Dwek & Arendt 1992; Draine 2003 and references therein), and within a SN remnant in particular Nozawa et al. (2006; 2007); Koza et al. (2009). Several studies consider only one type of action such as formation (Cherepichev & Dwek 2009; 2010; Cherepichev & Sarangi 2011; Cherepichev 2013; Dwel 2016), or examine only one process such as charging (Lai et al. 1981; Draine & Sutin 1987; Barkan et al. 1994) or sputtering (Shull & Scalo 1977; Tielemans et al. 1987; Dwel et al. 1996; Jones et al. 1996; Janev et al. 2001). Other studies have focused on a specific event within the grain’s journey in the SN remnant, such as the passage of the reverse shock (RS) (Silvia et al. 2010; 2012; Biscaro & Cherepichev 2016). More comprehensive studies such as Nozawa et al. (2017); Nath et al. (2008); Micelotta et al. (2010); Bocchio et al. (2016) follow the grains through the entire SN remnant, but do not include magnetic fields, which could potentially affect the trajectory of the grains within the SN remnant.

To date, studies of near-Earth SNe (e.g., Athanassiadou & Fields 2011; Fry et al. 2015; 2016; Breitschwerdt et al. 2016; Peige 2016; Peige et al. 2017; Schureich et al. 2017) have assumed that the 60Fe material would be coupled to the SN remnant plasma, and most likely confined to the leading edge of the SN remnant. This paper relaxes this assumption, allowing the grains to decouple from the SN remnant plasma earlier in the SN remnant evolution, potentially escaping the SN remnant. Additionally, we include the most relevant dust processes (drag, erosion, and charging) together with a rudimentary treatment of the SN remnant’s magnetic field. Our work assumes the magnetic fields in the SN ejecta and stellar wind are negligible for the purpose of dust propagation; including those fields would only reinforce our main conclusions.

We find that:

- Magnetic fields (specifically, the shocked ISM field)
dominate the fate of larger Fe grains ($a_{gr} \gtrsim 0.05 \mu m$), effectively confining them within the inner SN remnant, whilst drag dominates the fate of smaller Fe grains, eventually slowing them to the SN remnant plasma velocity.

- Dust grains exhibit “pinball” behavior due to magnetic reflections, and ricochet in the interior of the SN remnant.

- The inclusion of Rayleigh-Taylor instabilities is important, since the earlier passage of the RS exposes the dust grains to erosion and drag for a longer time period.

- Grain propagation studies omitting the effects of grain-grain collisions and shock encounters may be missing important grain influences.

- Our results indicate that the Sco-Cen association could not have hosted the SN progenitor, because the SN would not have been able to push the ISM magnetic field, B_{ISM}, beyond the Solar System so as to allow the 56Fe-containing dust grains to penetrate the Solar System and reach Earth.

- The Tuc-Hor association is still a possible source for the 56Fe.

Our findings also suggest that earlier assumptions of dust grains being entrained in the leading edge of the SN remnant (e.g., Fry et al. 2015; Breitschwerdt et al. 2016; Feige 2016; Feige et al. 2017; Schulreich et al. 2017) are not appropriate.

2. SN REMNANT EVOLUTION

A SN remnant will transition through four main phases as it evolves (Ostriker & McKee 1988; Padmanabhan 2001; Draine 2011; Janka et al. 2016). The first phase is Free Expansion, and it is characterized by a constant velocity after the explosion. The ejected material moves outward supersonically, and produces a shock wave in the surrounding, ambient material (hereafter referred to as the “forward shock” or FS). The presence of an ambient medium causes the ejected material to slow down, but in the early phases of expansion, when the mass of the ejected material far exceeds that of the swept up ambient material, this deceleration is negligible when examining the expansion of the FS. However, this slight deceleration creates a second shock wave (hereafter referred to as the “reverse shock” or RS), which communicates the presence of the ambient medium to the ejected material.

Analytic solutions to this phase were found by Chevalier (1982); Chevalier et al. (1992) and Nadezhin (1985) (referred to as Chevalier-Nadezhin); these self-similar solutions yield good descriptions for the position of the FS and incorporate the presence of a RS. In the Free Expansion phase, both the forward and reverse shocks are moving outward.

There are, however, some difficulties with the Chevalier-Nadezhin solutions. First, at the contact between the ejecta and ambient medium, the Chevalier-Nadezhin density profile solutions produce either an infinity or zero depending on the density profile of the ambient medium. Both cases are unphysical and, if one attempted to examine dust dynamics in such a state, the grain would encounter an imaginary wall or vacuum. Additionally, the Chevalier-Nadezhin solutions ignore the presence of Rayleigh-Taylor instabilities along the RS. Rayleigh-Taylor instabilities drive the RS further inward (Herant & Woosley 1994; Blundin & Ellison 2001; Blundin 2001) and, when considering dust, the location of the RS is of extreme importance since its passage shatters grains and exposes them to the hot SN remnant material.

As the FS sweeps up more material, the SN remnant transitions into the second, Energy-/Adiabatic-Conserving, phase. This phase is often called the Sedov-Taylor phase after Sedov (1959) and Taylor (1950) who found self-similar descriptions of the expansion. When the swept-up material is approximately equal in mass to the ejecta material, the RS will cease moving outward and be driven inward, deeper into the ejecta, eventually proceeding all the way to the center of the SN remnant. Studying dust dynamics during the Sedov-Taylor phase would be fairly straightforward, since the plasma density, velocity, and pressure within the SN remnant are described smoothly. However, because the dust grains are initially formed during the Free Expansion phase, a description that includes a transition between phases is required. Truelove & McKee (1999) found analytic solutions for this transition, describing the positions of the FS and RS through both phases. However, these do not include descriptions of the plasma properties needed to describe the grain dynamics (except as initial conditions) and ignore the effects of Rayleigh-Taylor instabilities along the RS.

As the SN remnant expands and cools, ions within the SN remnant shell will combine with electrons and radiate photons. As the SN remnant outer shell becomes radiative, the FS will lose thermal pressure support and the expansion will be determined by the momentum within the shell (Blondin et al. 1998; Draine 2011). This third phase is the Momentum-Conserving phase, with the SN remnant shell slowing as it collects more surrounding material (this phase is also referred to as the “snowplow” phase because of this accumulating action). The snowplow phase typically begins around 50,000 years after the SN explosion but, since the typical grain lifetime is around 100,000 years (Draine 2011), a detailed examination of the grain properties at the end of the Sedov-Taylor phase will be needed first, since the dust could be severely (possibly completely) ablated before reaching the snowplow phase.

Eventually the FS will slow to the sound speed of the ambient medium. At this point the SN remnant effectively stops expanding, and the SN remnant enters the Fade-Away phase as the shock transitions to a sound wave in the ambient medium. The SN remnant will eventually be dispersed through random processes in the ISM. Any dust grains that survive to this stage will behave the same as they would in the general ISM.

Before specifying the SN remnant environment we assume, we first mention the quantities of the SN remnant environment we require in order to describe accurately the dynamics of our dust grains. We will describe in much greater detail why these quantities are important. The density, velocity, and temperature (and how they evolve with time) within the SN remnant are re-
quired, as these determine the drag experienced by the grains as well as the degree of erosion by the plasma. The composition of the plasma should also be detailed, since larger ions such as O/Si/S in sufficient concentrations can enhance erosion beyond that due to H and He. The grain’s charge and the direction and strength of the SN remnant magnetic field are important since dust grains spiraling around magnetic field lines could potentially become trapped within the SN remnant, as we discuss in §4.1.2 below. The charge is dependent on the material of the dust grain, which is itself dependent on where the dust is formed within the ejecta. Finally, the location of the dust grain’s birthplace in the ejecta is significant, since it also affects when it will encounter the RS and its initial position and velocity.

3. MODEL DESCRIPTION

We need to model the SN remnant’s density, \(\rho \), velocity, \(\mathbf{v} \), pressure, \(P \), temperature, \(T \), and magnetic field, \(\mathbf{B} \), and use the magnetohydrodynamics (MHD) equations as the framework. Since we are dealing with a SN explosion, the relative thermal velocities between particles will be small compared to the bulk velocity (meaning thermal conduction can be ignored), the plasma is collisionless (meaning resistivity and Ohmic heating due to electron-ion collisions can be ignored), and the ejecta velocity is radial and much greater than the escape velocity (\(v_{\text{ej}} \gg v_{\text{esc}} \)) for the central compact object (meaning Coriolis and gravitational effects can be ignored). Additionally, if we limit our examination to the early phases of the SN remnant expansion (the Free Expansion and Sedov-Taylor phases), we can ignore radiative effects. Thus we use the ideal MHD equations (in Lagrangian form and cgs/esu units):

\[
\begin{align*}
\frac{D\rho}{Dt} &= -\rho \nabla \cdot \mathbf{v} \quad \text{(Mass),} \\
\frac{D\mathbf{v}}{Dt} &= -\frac{1}{\rho} \nabla P + \frac{J}{\rho c} \times \mathbf{B} \quad \text{(Momentum),} \\
\frac{DP}{Dt} &= -\Gamma P \nabla \cdot \mathbf{v} \quad \text{(Energy),} \\
\frac{DB}{Dt} &= (\mathbf{B} \cdot \nabla) \mathbf{v} - \mathbf{B} \cdot \nabla \times \mathbf{B} \quad \text{(Induction),}
\end{align*}
\]

where \(\frac{D}{Dt} = \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla \), \(J = \frac{\rho c}{4\pi} \mathbf{B} \times \mathbf{B} \), and \(\Gamma = 5/3 \) for the medium we study. Expanding the momentum equation (Eq. 2), we find:

\[
\frac{D\mathbf{v}}{Dt} = -\frac{1}{\rho} \nabla P + \frac{1}{\rho c} \left(\frac{c}{4\pi} \right) (\nabla \times \mathbf{B}) \times \mathbf{B}
\]

\[= -\frac{1}{\rho} \nabla P + \frac{1}{4\pi \rho} \left(\frac{1}{2} \nabla B^2 \right). \quad (6)
\]

The first term in the parentheses, \((\mathbf{B} \cdot \nabla) \mathbf{B}\), represents the magnetic tension \((\sim B^2/4\pi)\) and the second term, \(\frac{1}{2} \nabla B^2\), represents magnetic pressure \((\sim B^2/8\pi)\). In a typical SN remnant during the Free Expansion and Sedov-Taylor phases, expanding at \(\sim 200 \text{ km s}^{-1}\) with a peak density of \(4 \times 10^{-3} \text{ cm}^{-3}\), the ram pressure is \(P_{\text{ram}} = \rho v^2 \sim 10^{-3} \text{ dyne cm}^{-2}\). In contrast, for a typical ISM magnetic field \(B_{\text{ISM}} \sim 1 \mu\text{G}\) the magnetic tension and pressure are much weaker, \(P_{\text{mag}} \sim 10^{-13} \text{ dyne cm}^{-2}\) (see §3.3). Because of this, they can be ignored, and Eqs. (1) - (3) simplify to:

\[
\begin{align*}
\frac{D\rho}{Dt} &= -\rho \nabla \cdot \mathbf{v}, \\
\frac{D\mathbf{v}}{Dt} &= -\frac{1}{\rho} \nabla P, \\
\frac{DP}{Dt} &= -\Gamma P \nabla \cdot \mathbf{v}.
\end{align*}
\]

These are the basic fluid equations we use, where we see that during the early stages of SN remnant evolution, the expansion can be determined without including the magnetic field influence.

3.1. Nucleosynthesis Products

Fry et al. (2015) found that an ECSN was the most likely source for the \(^{56}\text{Fe}\) signal. This determination was based on the nucleosynthesis results in Wanajo et al. (2009, 2013a), so we use the results of these nucleosynthesis simulations for several aspects of our model. First, the results of the nucleosynthesis simulations are the initial conditions for our hydrodynamics simulations. The nucleosynthesis results also describe the composition of the ejecta, allowing us to determine the types and concentrations of elements interacting with the grains as they transit the SN remnant. Lastly, the nucleosynthesis results give the initial positions of the radioisotopes within the ejecta. This allows us to determine the initial velocities and types of grains that will mostly likely be formed containing specific radioisotopes (Sarangi & Cherchneff 2013, 2015; Biscaro & Cherchneff 2014; Silber et al. 2016). The major nucleosynthesis products and radioisotopes are shown with their initial positions in Fig. 1.

We have assumed for definiteness an ECSN progenitor with a ZAMS mass of 8.8 \(M_{\odot}\), leaving a 1.363 \(M_{\odot}\) neutron star, and ejecting a 0.014 \(M_{\odot}\) inner core that contains the SN synthesized products and a 1.249 \(M_{\odot}\) outer envelope composed of 70% Hydrogen and 30% Helium (we assume large-scale convection that thoroughly mixes the envelope) giving a total ejecta mass of \(M_{\text{ej}} = 1.263 M_{\odot}\). This is similar to the treatment by Janka et al. (2008), Hoffman et al. (2008). The envelope is assumed to be in hydrostatic equilibrium and a single isothermal sphere with a temperature of 3500 K and completely ionized (\(\mu_{\text{env}} = 0.61\)) (for more detail see §3.2). The energy delivered as kinetic energy into the ejecta is \(E_{\text{SN}} = 1.5 \times 10^{50} \text{ erg}\) (Wanajo et al. 2009).

3.2. Hydrodynamic Initial Conditions

The density, velocity, and pressure profiles are based on the Wanajo et al. (2013b) nucleosynthesis results, the expected configuration of an ECSN progenitor, and the properties of the Local Bubble at the time of the SN. The ejecta is divided into an inner core region and an outer shell region based on the Wanajo et al. (2013b) results. The two-dimensional Wanajo et al. (2013b) results contained values at different azimuths and radii, so we averaged the values across azimuths, and fit a power law profile to the density and velocity averages. A comparison of the averaged results and fits are shown in Figs. 2(a)}
Fig. 1.— Nucleosynthesis products within each zone. The upper panel shows the mass fractions for the main stable nucleosynthesis products, and the lower panel shows the relative distribution of the main radioisotopes. Note that the mass fractions for each element are stacked, not absolute. To find the absolute mass fraction for an element, subtract the value of the element plotted just below it. By comparing the concentrations of the radioisotopes in Fig. 1(b) to the stable products in Fig. 1(a), we can estimate the dust molecules into which the radioisotopes are most likely to condense.
and 2(b) note that the core cutoff positions for density and velocity (r_{core,1} and r_{core,2}, respectively) are slightly different in order to provide a better fit.

The progenitor of an ECSN is assumed to be a Super-AGB star [Smartt et al. 2009, Woosley & Heger 2015] with an envelope that has been completely mixed due to its thermal-pulsing (TP-SAGB) phase [Herwig 2005, Poelarends et al. 2008, Pumo et al. 2009, Pumo 2010, Jones et al. 2016]. This implies that the progenitor will be a red supergiant and have an extended, isothermal envelope. We chose an envelope temperature of 3500 K (the approximate surface temperature of Betelgeuse; Freytag et al. 2002) with \(\rho \propto r^{-2} \) and \(v = 0 \). The edge of the envelope, \(r_{envelop} \), marks the edge of the progenitor, and we assume the presence of a pre-SN wind. Several studies have examined the wind and mass loss during the TP-SAGB phase (see e.g., Doherty et al. 2013 and references therein), and we assumed a mass loss of \(\dot{M}_{wind} = 7 \times 10^{-5} M_\odot \text{ yr}^{-1} \) and a wind velocity of \(u_{wind} = 10 \text{ km s}^{-1} \).

The pre-SN stellar wind will extend until the ram pressure of the wind, \(P_{wind} = \rho_{wind} u_{wind}^2 \), equals the pressure of the ISM, \(P_{ISM} \) (Castor et al. 1975). Because the Local Bubble shows evidence of multiple SNe (e.g., Breitschwerdt et al. 2016 and references therein), we assume the source of the \(^{60}\text{Fe}\) signal to be the most recent SN and that this SN would have occurred in region denser than currently observed in the Local Bubble but depleted compared to the average ISM. Thus we assumed ISM values of \(n_{ISM} = 0.1 \text{ cm}^{-3} \), \(\mu_{ISM} = 0.61 \), and \(P_{ISM} = 2.2 \times 10^{-13} \text{ dyn cm}^{-2} \).

Combining these parameters, we assume the following initial conditions for our hydrodynamic simulations:

\[
\rho(r) = \begin{cases}
\rho_{core}(r) & r_{cutoff} \leq r < r_{core,1}, \\
\rho_{shell}(r) & r_{core,1} \leq r < r_{shell}, \\
\rho_{envelop}(r) & r_{shell} \leq r < r_{envelop}, \\
\rho_{wind}(r) & r_{envelop} \leq r < r_{wind}, \\
\rho_{ISM} & r_{wind} \leq r;
\end{cases}
\]

where

\[
\rho_{core}(r) = 1.51 \times 10^5 \text{ g cm}^{-3} \left(\frac{r}{9.52 \times 10^7 \text{ cm}} \right)^{-5/4},
\]

\[
\rho_{shell}(r) = 1.75 \text{ g cm}^{-3} \left(\frac{r}{1.46 \times 10^9 \text{ cm}} \right)^{-10},
\]

\[
\rho_{envelop}(r) = 743.67 \text{ g cm}^{-3} \left(\frac{r}{7.68 \times 10^8 \text{ cm}} \right)^{-2},
\]

\[
\rho_{wind}(r) = \frac{\dot{M}_{wind}}{4\pi u_{wind}^2},
\]

\[
\rho_{ISM} = \mu_{ISM} m_H n_{ISM}.
\]

1 Coincidentally, these values are similar to those of the Local Cloud. [Fields et al. 2008] and

\[
\begin{align*}
& \quad r_{cutoff} = 9.52 \times 10^7 \text{ cm} \\
r_{core,1} = 2.52 \times 10^8 \text{ cm} \\
r_{shell} = 8.01 \times 10^8 \text{ cm} \\
r_{envelop} = 4.51 \times 10^{11} \text{ cm} \\
r_{wind} = 3.99 \times 10^{19} \text{ cm} ;
\end{align*}
\]

\[
v(r) = \begin{cases}
v_{core}(r) & r_{cutoff} \leq r < r_{core,2}, \\
v_{shell}(r) & r_{core,2} \leq r < r_{shell}, \\
v_{envelop}(r) & r_{shell} \leq r < r_{envelop}, \\
v_{wind}(r) & r_{envelop} \leq r < r_{wind}, \\
v_{ISM} & r_{wind} \leq r;
\end{cases}
\]

where

\[
\begin{align*}
v_{core}(r) &= 1.81 \times 10^9 \text{ cm s}^{-1}, \\
v_{shell}(r) &= 1.81 \times 10^9 \text{ cm s}^{-1} \left(\frac{r}{2.52 \times 10^8 \text{ cm}} \right)^{-10}, \\
v_{envelop}(r) &= 0 \text{ cm s}^{-1}, \\
v_{wind}(r) &= 10 \text{ km s}^{-1}, \\
v_{ISM} &= 0 \text{ cm s}^{-1} ;
\end{align*}
\]

\[
\text{and } r_{core,2} = 5.88 \times 10^8 \text{ cm};
\]

\[
P(r) = \begin{cases}
P_{core}(r) & r_{cutoff} \leq r < r_{core,1}, \\
P_{shell}(r) & r_{core,1} \leq r < r_{shell}, \\
P_{envelop}(r) & r_{shell} \leq r < r_{envelop}, \\
P_{wind}(r) & r_{envelop} \leq r < r_{wind}, \\
P_{ISM} & r_{wind} \leq r;
\end{cases}
\]

3.3. Magnetic Field

In our simulation we split the magnetic field into three regions: the star/ejecta field, the stellar wind field, and the ISM field. In the star/ejecta region, we expect a surface field \(B \sim 1 \text{ G} \) (this is the average surface field for Betelgeuse, which is similar in mass to our expected progenitor, Petit et al. 2013). From magnetic flux conservation (e.g., Padmanabhan 2001), \(B \sim B_{ini} \left(r_{ini}/r \right)^2 \), and if we estimate that the dust will decouple from the plasma at \(r \sim 1 \text{ pc} \), (a very rough estimate) then the stellar field
Fig. 2.— Initial density, velocity and pressure profiles. Our initial profiles are shown in blue with the azimuthally-averaged ECSN results plotted in red. Because our model includes an outer envelope (similar to Janka et al. 2008), the envelope profile contains some of the nucleosynthesis products. The composition of the envelope was adjusted to include the nucleosynthesis products’ mass, but these products were given the initial density, velocity, and pressure of the envelope.
will have weakened to: \(B \sim 10^{-8} \mu \text{G} \) (\(\Rightarrow R_{\text{gyro}} \sim 100 \text{ kpc} > \lambda_{\text{Milky Way}} \), see §4.1.2). Furthermore, because the stellar wind magnetic field is the surface field stretched even further due to flux freezing within the pre-SN wind, we expect the stellar wind magnetic field to be weak as well. With this reasoning, we set \(B_{\text{outer}} = B_{\text{wind}} = 0 \).

For the ISM magnetic field, because we focus our examination within the Local Bubble, the site of multiple SNe, we assume the initial magnetic field to be non-uniform and weakened compared to the average ISM (\(\sim 3.57 \mu \text{G} \)). Using flux conservation, from Padmanabhan (2001) again, and the fact that \(\rho \propto r^{-3} \):

\[
\Rightarrow B \approx B_{\text{ini}} \left(\frac{\rho}{\rho_{\text{ini}}} \right)^{2/3},
\]

so our initial magnetic field will have an average magnitude of \(\langle |B_{\text{ini}}| \rangle \approx 0.77 \mu \text{G} \).

As our model SN expands into the ISM, we expect it to encounter an ISM magnetic field that has been twisted by turbulence from the passages of previous SNe ejecta. This assumption is based on evidence that the Local Bubble has experienced multiple SNe, which means the ISM will be ionized. The presence of density perturbations within the ISM and ejecta lead to instabilities that will drive turbulence in the ISM plasma that will, in turn, drag the magnetic field with it. In order to generate a model for the magnetic field encountered by our dust grains, we will build our magnetic field in three parts:

1. Generate a grid of initial magnetic field values with an energy spectrum appropriate to turbulent media.
2. Interpolate between the grid values in order to describe the initial magnetic field at all points while remaining divergence-free.
3. Transform the initial magnetic field to account for the passage of the FS and varying density in order to determine the final magnetic field encountered by our dust grains.

We assume that the turbulence in the ISM is homogeneous and isotropic and is fully-developed and station-ary (time-translation invariant). In order to generate a vector field with these properties, we use a random realization that generates a 3-D grid of values with the desired specific energy spectrum, \(\mathcal{E}_k \sim k^{-5/3} \) with \(C = 3.46 \times 10^{-5} \text{G}^2 \cdot \text{pc}^2 \), \(\lambda_{\text{outer}} = 0.5 \text{ pc} \), and \(\lambda_{\text{inner}} = 0.005 \text{ pc} \).

![Sample turbulent field](image)

Fig. 3.—Sample turbulent field. The energy spectrum uses a Kolmogorov profile \(\mathcal{E}_k \sim k^{-5/3} \) with \(C = 3.46 \times 10^{-5} \text{G}^2 \cdot \text{pc}^2 \), \(\lambda_{\text{outer}} = 0.5 \text{ pc} \), and \(\lambda_{\text{inner}} = 0.005 \text{ pc} \).

It should be noted that we do not include a description of magnetic field amplification along the FS (\(B_{\text{ISM}} \sim 1 \mu \text{G} \), Inoue et al. 2009; Xu & Lazarian 2017). As will be seen in §5, since our grains do not reach the FS, this should not affect our conclusions.
\[\frac{D}{Dt} \left(\frac{1}{\rho} \right) = \frac{\nabla \cdot v}{\rho}, \]\n
yielding:

\[\frac{DB}{Dt} = (B \cdot \nabla) v - B \left(\rho \frac{D}{Dt} \left(\frac{1}{\rho} \right) \right) \]

\[\Rightarrow \frac{1}{\rho} \frac{DB}{Dt} + B \frac{D}{Dt} \left(\frac{1}{\rho} \right) = \frac{1}{\rho} (B \cdot \nabla) v \]

\[\Rightarrow \frac{D}{Dt} \left(\frac{B}{\rho} \right) = \left(\frac{B}{\rho} \right) \cdot \nabla v. \] (16)

When compared to the flux conservation Lagrangian derivative, \(\frac{D}{Dt}(dI) = dI \cdot \nabla v \), this means that the magnetic flux is “frozen in” the fluid. Because Eq. (16) relates the evolution of the magnetic field to the evolution of only the density (which can be determined using the fluid equations), we can solve for the evolution of the magnetic field using that of the density.

For an infinitesimally small fluid element, the magnetic field will be uniform through the entire fluid element, and we can decompose the vector \(B \) into a component parallel to the direction of expansion, \(B_\parallel \), and a component orthogonal to the direction of expansion, \(B_\perp \):

\[B_\perp = B \times \hat{r}, \quad B_\parallel = (B \cdot \hat{r}) \hat{r}, \]

\[B = B_\perp + B_\parallel, \quad B^2 = B_\perp^2 + B_\parallel^2, \] (17)

(18)

where \(\hat{r} \) is the radial unit vector. Using the flow freezing condition and spherical symmetry, we find the following relations for the initial and final magnetic fields (for further detail, see Appendix D):

\[B_\parallel,\text{fin} = B_\parallel,\text{ini} \left(\frac{\rho_\text{ini}}{\rho_\text{fin}} \right)^2, \]

(19)

\[B_\perp,\text{fin} = B_\perp,\text{ini} \left(\frac{\rho_\text{fin}}{\rho_\text{ini}} \right)^2 \] (20)

With this relation between the initial and final magnetic fields, we can relate their divergences as well:

\[\nabla \cdot B_\text{fin} = \nabla \cdot B_\perp,\text{fin} + \nabla \cdot B_\parallel,\text{fin} \]

\[= \nabla \cdot B_\perp,\text{ini} \left(\frac{\rho_\text{fin}}{\rho_\text{ini}} \right)^2 + \nabla \cdot B_\parallel,\text{ini} \left(\frac{\rho_\text{ini}}{\rho_\text{fin}} \right)^2 \]

\[= \left(\frac{\rho_\text{fin}}{\rho_\text{ini}} \right)^2 \nabla \cdot B_\perp,\text{ini} \left(\frac{\rho_\text{ini}}{\rho_\text{fin}} \right)^2 \nabla \cdot B_\parallel,\text{ini}. \] (21)

Because our initial magnetic field has been interpolated to be divergence free, the magnetic field will remain divergence free at all times:

\[\nabla \cdot B_\text{ini} = 0 \Rightarrow \nabla \cdot B_\perp,\text{ini} = \nabla \cdot B_\parallel,\text{ini} = 0 \]

\[\Rightarrow \nabla \cdot B_\text{fin} = 0. \] (22)

3.4. Hydrodynamic Simulations

Our hydrodynamic simulations use the RT1D code written by Duffell (2016). This is a 1-D+, adaptive, moving mesh code that includes Rayleigh-Taylor instabilities in SNe. Although the code is one-dimensional, it includes the multi-dimensional effects of Rayleigh-Taylor instabilities as source terms in the fluid equations, chosen to represent turbulent perturbations averaged over solid angle. This enables simulations of non-radiative SN remnant expansion based on the basic fluid equations, that run from the Free Expansion through the Sedov-Taylor phases. As noted by Duffell (2016), the incorporation of Rayleigh-Taylor instabilities eliminates the singularities inherent in the Chevalier-Nadezhin solutions and provides a more accurate position of the RS than that found by Truelove & McKee (1999). The simulations are run in characteristic units; these are dimensionless units of the hydrodynamic quantities (i.e., in characteristic units, density is given by \(\rho^* = \rho / \rho_{ch} \), where \(\rho_{ch} \) is the characteristic density for the SN environment). The characteristic values’ definitions and our adopted values are:

\[r_{ch} = \left(\frac{M_{ej}}{\rho_{ISM}} \right)^{1/3} = 9.4 \, \text{pc}, \]

\[t_{ch} = \frac{M_{ej}^{5/6}}{\rho_{ISM}^{1/3} r_{SN}^{1/2}} = 3800 \, \text{yr}, \]

\[M_{ch} = M_{ej} = 1.263 \, M_{\odot}, \]

\[\rho_{ch} = \rho_{ISM} = 0.061 m_p \, \text{cm}^{-3}, \]

\[v_{ch} = \frac{r_{ch}}{t_{ch}} = 2400 \, \text{km s}^{-1}, \]

\[P_{ch} = \rho_{ch} c_{ch}^2 = 6.1 \times 10^{-9} \, \text{dyne cm}^{-2}, \]

\[T_{ch} = \frac{\mu e m_u P_{ch}}{k_B \rho_{ch}} = \frac{\mu e m_u}{k_B} v_{ch}^2 = 4.4 \times 10^8 \, \text{K}. \] (23)

These definitions are based on Truelove & McKee (1999) and assume a uniform ambient medium (for power-law, i.e., stellar wind, mediums see also: Truelove & McKee 1999; Laming & Hwang 2003; Haid et al. 2016). Since we are examining the SN remnant expansion both inside and outside the pre-SN stellar wind, the uniform case is more appropriate. As noted in §3.2, our choices for \(E_{SN} \) and \(M_{ej} \) correspond to our adopted ECSN model.

The hydrodynamics simulations were begun at \(t = 300 \) ms (\(t^* = 2.52 \times 10^{-12} \)) after the core bounce, which corresponds to the end of the Wanajo et al. (2013b) results, and run through \(t = 3.8 \, \text{Myr} \left(t^* = 1000 \right) \). This encompasses the entire Free Expansion and Sedov-Taylor phases. The position values began at the cutoff range, \(r_{cutoff} = 9.52 \times 10^7 \, \text{cm} \left(r^* = 3.33 \times 10^{-12} \right) \) and extended through the outermost range, \(R = 9400 \, \text{pc} \left(R^* = 1000 \right) \), and were initially divided into 1024 zones. In the simulation run, results were generated at 1000 logarithmically-spaced time intervals. The RT1D code allows for a more accurate gauge of the SN, but since our use of characteristic units are confined to unit conversions, our conclusions will not be affected by the distinction.
adapts its time steps to simulate accurately the hydrodynamics; over 100k time steps were used during the run, but only 1000 were output in order to save memory requirements. Each output includes the radial position of the zone’s midpoint, zone radial width, density, velocity, pressure, mixture fraction (the fraction of the zone comprised of ejecta material), and the turbulent factor (which was a measure of the Rayleigh-Taylor fluctuations, for our purposes this was not used). Because many of the results had nearly power-law profiles, 2-D linear spline interpolation functions were generated for the common logarithms of the SN remnant quantities (i.e., \(\log \rho^*, \log |v^*|, \text{etc} \)) done across \(\log t^* \times \log r^* \). The temperature interpolation was done with \(\log T^* = \log (P^*/\rho^*) \).

Additionally, with the assumption of spherical symmetry, the mass enclosed, \(M_{\text{enclosed}} \), by a sphere at a given radial position, \(r \), is described by:

\[
M_{\text{enclosed}} = \int_{r_{\text{min}}}^{r} 4\pi \rho(r') r'^2 \, dr',
\]

where \(r_{\text{min}} \) is the innermost zone position in the RT1D simulation. Given the enclosed mass, the average elemental composition of SN remnant can be determined at any point. With the interpolation functions, we have the means to determine the density, velocity, temperature, and composition at all locations within the SN remnant.

4. GRAIN PROCESSES

Now that we have constructed the SN remnant environment, we can examine the influences acting on the dust grain. The radioisotopes will be formed deep within the ejecta; as the SN remnant expands, the ejecta will cool and overdensities in the ejecta will form clouds (also referred to as clumps: Silvia et al. 2010, 2012). This will begin \(\sim 1 - 5 \) years after the SN. The radioisotopes will chemically bond with the surrounding elements forming molecules first, then combining to form larger and larger grains. We assume our primary radioisotopes (\(^{60}\text{Fe}, ^{26}\text{Al}, ^{53}\text{Mn}, ^{41}\text{Ca} \)) will form compounds like their stable isotopes. In the case of \(^{60}\text{Fe} \), the bulk of which forms in a primarily Fe-Ni region (see Fig. 1), we assume it will condense and form into metallic Fe grains rather than silicates, oxides, or sulfides since the associated elements are not present in that region of the ejecta. Conversely, \(^{26}\text{Al} \), which is created in an O-rich region, will likely form into AO and \(\text{Al}_2\text{O}_3 \) molecules, and some of the \(^{53}\text{Mn} \) will likely form MnS since it is created in a S-rich region Field (1975). Although mixing due to Rayleigh-Taylor instabilities is present, this mixing is macroscopic not microscopic, meaning the composition choice of our grains will not be affected. This is supported observationally by examinations of Cassiopeia A (Douvion et al. 1999) and discussed in detail in Cherchneff & Dwek (2010); Cherchneff & Sarangi (2011). Knowing the type of compound the radioisotope resides in is important since different compounds have different densities, are more/less resistant to erosion, and absorb/emit electrons and photons differently.

The grains will continue to grow until the element products run out, the density drops too low, or the RS arrives. Up to this point, the ejecta gas, overdense clouds, and the dust grains within have been traveling together with negligible relative velocities. The RS will then slow and heat the gas and send a shock wave through the cloud, crushing it and shattering some of the dust grains. Several studies have examined this process (Silvia et al. 2010, 2012, Biscaro & Cherchneff 2016), and our examination of the dust grains will begin just after this processing. The cloud containing the dust grains will dissipate, and the dust grains will be exposed to the hot SN remnant plasma. Because of their high mass compared to the surrounding gas, the dust grains will have decoupled from the plasma and will be moving with a large velocity relative to the plasma. A number of influences will now act on the dust grain (see Dwek & Arendt 1992 and references therein), and we will now examine the most important processes in greater detail. We assume the grains to be spherical in shape with radius, \(a_{\text{gr}} \), and uniform in composition.

To track the trajectory of a dust grain within the SN remnant, we solve a system of 8 ordinary differential equations:

\[
\frac{d r_{\text{gr}}}{d t} = v_{\text{gr}},
\]

\[
\frac{d v_{\text{gr}}}{d t} = \sum_i F_i(a_{\text{gr}}, q_{\text{gr}}, \rho, T, ...),
\]

\[
\frac{d a_{\text{gr}}}{d t} = \sum_i N_i(a_{\text{gr}}, q_{\text{gr}}, \rho, T, ...),
\]

\[
\frac{d q_{\text{gr}}}{d t} = \sum_i I_i(a_{\text{gr}}, q_{\text{gr}}, \rho, T, ...),
\]

where the summed processes, \(i \), are dependent on the grain properties (size, charge, etc.) and the SN remnant environment (density, temperature, etc.).

Our specific initial grain conditions will be given in §5, but, in qualitative terms, we follow our dust grains from time \(t_0 \), which corresponds to the time the RS passes the location of the grain plus three times the cloud crushing time:

\[
t_0 = t_{\text{RS}} + 3\tau_{\text{cc}},
\]

where the cloud crushing time is defined in terms of the cloud radius, \(a_{\text{cloud}} \), and the relative velocity of the RS, \(v_{\text{RS}} \) (Klein et al. 1994):

\[
\tau_{\text{cc}} = a_{\text{cloud}}/v_{\text{RS}}.
\]

We assume a cloud size of \(a_{\text{cloud}} = 10^{16} \text{ cm} \) (Silvia et al. 2010). The initial velocity, \(v_0 \), is determined by the velocity of the surrounding gas at the time of condensation. Dust condensation can begin over a range of times (\(\sim 100 - 1000 \) days after the explosion Sarangi & Cherchneff 2015; Shuder et al. 2016; Cherchneff & Sarangi 2017), and we assume condensation took place at 500 days after the explosion. The dust grain will retain this initial velocity through the passage of the RS until the cloud has dissipated (i.e., \(t_0 \)). The initial position of the grain, \(r_0 \), is the location of the grain at the time the cloud dissipates. Because we begin immediately after the cloud

4Because of Free Expansion and the fact that we are not modeling grain growth, our results are not sensitive to the condensation time.
dissipates, the initial grain size, \(a_0 \), will be the post-RS/post-shattering size. Since we do not model grain growth, we examine a range of sizes. Also, we do not include grain-grain interactions (e.g., impacts and charge influences). Lastly, the initial charge will be zero, \(q_0 = 0 \), since the grains are formed in a cool, dense cloud.

4.1. Grain Dynamics

4.1.1. Drag Force

Because the dust grains have a relative velocity compared to the surrounding plasma, they will experience drag. Drag will be due to collisions with plasma particles and, since the plasma is ionized and the grains charged (see §13), Coulomb drag (also called plasma drag) may also be relevant. The combined drag of both sources is given by Draine & Salpeter (1979; Draine 2011):

\[
F_{\text{drag}} = 2\pi a_{\text{gr}}^2 k_B T \times \left\{ \sum_j n_j \left[G_0 (s_j) + Z_j^2 \Phi^2 \ln [\Lambda/Z_j] G_2 (s_j) \right] \right\},
\]

where:

\[
G_0 (s) \equiv \left(s^2 + 1 - \frac{1}{4s^2} \right) \text{erf} [s] + \frac{1}{\sqrt{\pi}} \left(s + \frac{1}{2s} \right) \exp \left[-s^2 \right],
\]

\[
G_2 (s) \equiv \frac{\text{erf} [s]}{s^2} - \frac{2}{s \sqrt{\pi}} \exp \left[-s^2 \right],
\]

\[
\Phi \equiv \frac{eU_{\text{rel}}}{k_B T},
\]

\[
s_j \equiv \left(\frac{m_j v_{\text{rel}}}{2k_B T} \right)^{1/2},
\]

\[
\Lambda \equiv \frac{3}{2n_e} \left(k_B T / \pi e \right)^{1/2},
\]

\[
\text{erf} [\chi] \equiv \frac{2}{\sqrt{\pi}} \int_0^\chi \exp \left[-\tau^2 \right] d\tau,
\]

where we use cgs/esu units. The \(G_0(s) \) term accounts for collisional drag, and the \(G_2(s) \) term accounts for Coulomb drag. Approximations exist for both, but we used the exact forms given here for completeness. The drag force is summed over all plasma species, \(j \), within the plasma (e.g., \(p^+, e^-, \alpha, C, \) etc.), each with number density \(n_j \). The velocity parameter, \(s \), depends on the relative velocity between the grain and plasma, \(v_{\text{rel}} \), mass of the impacting plasma particle, \(m_j \), and the temperature of the plasma, \(T \) (we assume all constituents are at the same temperature, i.e., \(T_j = T \forall j \)). Similarly, the potential parameter, \(\Phi \) depends on the electric potential of the grain, \(U_{\text{gr}} = q_{\text{gr}}/q_{\text{gr}} \) where \(q_{\text{gr}} \) is the charge of the grain. The charge number of the plasma particle is \(Z_j \), \(k_B \) is the Boltzmann constant, and \(e \) is the elementary charge.

4.1.2. Motion of a charged dust grain in a magnetic field

Because there will be magnetic fields present within the SN remnant and the grain will be charged, we include the Lorentz force on the grain:

\[
F_{\text{mag}} = \frac{q_{\text{gr}}}{c} v_{\text{rel}} \times B.
\]

Because of flux freezing, the magnetic field, \(B \), will be moving with the plasma, so we use the grain’s velocity relative to the plasma, \(v_{\text{rel}} = v_{\text{gr}} - v_{\text{plasma}} \).

Under the influence of the Lorentz force, charged dust grains in a magnetic field will spiral around magnetic field lines (Northrop & Morfill 1984). The radius of this spiraling, \(R_{\text{gyro}} \), is given by Murray et al. (2004):

\[
R_{\text{gyro}} = 9.75 \times 10^{-4} \text{ pc} \left(\frac{\rho_{\text{gr}}}{7.87 \text{ g cm}^{-3}} \right) \left(\frac{172.5 \text{ V}}{|U_{\text{gr}}|} \right) \times \left(\frac{1 \mu G}{B} \right) \left(\frac{v_{\perp,\text{gr}}}{175 \text{ km s}^{-1}} \right) \left(\frac{a_{\text{gr}}}{0.1 \mu m} \right)^2,
\]

where \(B \) is the magnetic field, \(\rho_{\text{gr}} \) is the mass density, \(v_{\perp,\text{gr}} \) is the velocity perpendicular to the magnetic field, \(a_{\text{gr}} \) is the radius, and \(U_{\text{gr}} \) is the potential of the grain. Additionally, the period of this spiraling can be determined:

\[
\tau_{\text{gyro}} = 34 \text{ yr} \left(\frac{\rho_{\text{gr}}}{7.87 \text{ g cm}^{-3}} \right) \left(\frac{172.5 \text{ V}}{|U_{\text{gr}}|} \right) \times \left(\frac{1 \mu G}{B} \right) \left(\frac{a_{\text{gr}}}{0.1 \mu m} \right)^2.
\]

In the case of a magnetic field with varying magnitude, the spiraling dust grain will conserve adiabatic quantities (see e.g., §12.5, Jackson 1998). Of particular interest for our examination is the adiabatic invariant \(p_{\perp,\text{gr}}^2 / B \), where \(p_{\perp,\text{gr}} \) is the momentum of the grain perpendicular to the magnetic field and the parallel component \(v_{\parallel} = \sqrt{v^2 - v_{\perp}^2} \), where \(v \) is the total velocity. Since magnetic fields do not perform work on the grain, we know the speed of the grain at later times will be the same as when it entered the field, \(v = v_{\text{ini}} \). If the magnetic field increases with position, \(B(r) \), then by the adiabatic invariance:

\[
v_{\perp}^2 = \frac{v_{\perp,\text{ini}}^2}{B(r)} \cdot \frac{B_{\text{ini}}}{B_{\text{ini}}},
\]

As the magnetic field increases, \(v_{\perp} \) will increase, which means \(v_{\parallel} \) will decrease in order to maintain the original speed of the grain. There will be a position, \(R_{\text{bounce}} \), where the right side of Eq. (38) vanishes, and the grain’s movement along the magnetic field lines will reverse direction. Essentially, the grain will “bounce” off the stronger magnetic field. This is referred to as a magnetic mirror (Jackson 1998), and leads to the ‘pinball’ behavior we discuss in §14.

We can find an expression for the strength of the magnetic field able to bounce a dust grain. At bounce, \(B(R_{\text{bounce}}) = B_{\text{bounce}} \):

\[
v_{\text{ini}}^2 = v_{\perp,\text{ini}}^2 \frac{B_{\text{bounce}}}{B_{\text{ini}}}.
\]
and if we consider an average case ($v_\perp \sim v_\parallel$):

$$
\langle v_{\perp,\text{ini}} \rangle \approx \frac{1}{\sqrt{2}} v_{\text{ini}},
$$

(40)

then the magnetic field at bounce is:

$$
v_{\perp,\text{bounce}}^2 \approx \frac{1}{2} v_{\text{ini}}^2 \frac{B_{\text{bounce}}}{B_{\text{ini}}},
$$

(41)

$$
\Rightarrow B_{\text{bounce}} \approx 2 B_{\text{ini}}.
$$

(42)

If the magnetic field varies with some characteristic length scale, λ_{mag}, then when $R_{\text{gyro}} \lesssim \lambda_{\text{mag}}$, the grain will be “captured” by the magnetic field (i.e., the grain spirals around the magnetic field lines). After capture, if the magnetic field strength doubles, the dust grain will be reflected. We will see this effect is relevant when considering dust grains encountering shocked ISM material within a SN remnant.

4.2. Grain Sputtering

In addition to drag from the grains’ high velocity relative to the plasma, the grains will also be eroded/sputtered by impacts with plasma particles. In addition to kinetic sputtering from bulk motion of plasma onto the grains, at high temperatures the thermal velocities of plasma particles will also erode the grains. Because of high relative velocities and high temperatures within the SN remnant, we include both kinetic and thermal sputtering. The erosion rate due to sputtering (both kinetic and thermal) is given by (Dwek & Arendt 1992), and we use the approach by Nozawa et al. (2006), Biscaro & Cherchneff (2016):

$$
\frac{da_{\text{sput}}}{dt} = -\frac{m_{\text{sp}}}{4\rho_{\text{gr}}} \sum_j n_j \left(\frac{8k_B T}{\pi m_j} \right)^{1/2} \exp \left[-s_j^2 \right]
$$

$$
\times \int d\epsilon_{j} \sqrt{\epsilon_{j}} \exp \left[-s_j \right] \sinh \left(2s_j \sqrt{\epsilon_{j}} \right) Y_j^{0}(\epsilon_{j}),
$$

(43)

where m_{sp} is the mass of the sputtered atom (i.e., the average atomic mass for the dust composition, $m_{\text{sp,Fe}} = 56m_u$, $m_{\text{sp,FeO}} = 56m_u$, $m_{\text{sp,Fe}_2\text{O}_3} = 32m_u$, $m_{\text{sp,Fe}_3\text{O}_4} = 33.1m_u$), and ρ_{gr} is the density of the dust grain. Additionally, the angle-averaged sputtering yield is given by: $\langle Y_j^{0}(E_j) \rangle = 2Y_j^{0}(E_j)$ (Draine & Salpeter 1979), and the backward sputtering yield at normal incidence, $Y_j^{0}(E)$, is given by (Boldansky 1984):

$$
Y_j^{0}(\epsilon_{j}) = 160 \text{ atoms ion}^{-1} \frac{S_j(E)}{1 \text{ erg cm}^2} \frac{4.31 \text{ eV}}{E_{\text{bind}}}
$$

$$
\times \left(\frac{\zeta_j(\epsilon_{j})}{\kappa \zeta_j + 1} \right) \left(1 - \left(\frac{E_{\text{th}}}{E} \right)^{2/3} \right)
$$

$$
\times \left(1 - \left(\frac{E_{\text{th}}}{E} \right)^2 \right),
$$

(44)

where κ is a free parameter that is adjusted to fit experimental data, E_{bind} is the surface binding energy (see Table 1), and $\zeta_j = m_{\text{target}}/m_j$ is the ratio of the target atom mass, m_{target}, to the incident atom mass, m_j. The threshold energy, E_{th}, to induce sputtering is given by (Andersen & Bay 1981, Boldansky 1984):

$$
E_{\text{th}} = \begin{cases}
\frac{E_{\text{bind}}}{g_j(1-g_j)} & \text{for } m_j/m_{\text{target}} \leq 0.3, \\
8E_{\text{bind}} \left(\frac{m_j}{m_{\text{target}}} \right)^{1/3} & \text{for } m_j/m_{\text{target}} > 0.3,
\end{cases}
$$

(45)

where $g_j = 4m_jm_{\text{target}}(m_j + m_{\text{target}})^{-2}$ is the maximum fraction energy transfer in a head-on elastic collision. The stopping cross-section, $S_j(E)$, is given by (Sigmund 1981):

$$
S_j(E) = 4\pi a_{\text{sc}} Z_j Z_{\text{target}} e^2 \frac{m_j}{m_j + m_{\text{target}}} \zeta_j(\epsilon_j),
$$

(46)

and the screening length, a_{sc}, for interaction between nuclei is:

$$
a_{\text{sc}} = 0.885a_{\text{Bohr}} \left(Z_j^{2/3} + Z_{\text{target}}^{2/3} \right)^{-1/2},
$$

(47)

where $a_{\text{Bohr}} = 0.529 \text{ Å}$ is the Bohr radius. An approximation of the function, $\zeta_j(\epsilon)$, is given by Matsunami et al. (1984):

$$
\zeta_j(\epsilon) = \frac{3.441 \sqrt{\epsilon_j} \ln[\epsilon_j + 2.718]}{1 + 6.35 \sqrt{\epsilon_j} + \epsilon_j (6.882 \sqrt{\epsilon_j} - 1.708)},
$$

(48)

where the reduced energy, ϵ_j, is:

$$
\epsilon_j = \left(\frac{m_{\text{target}}}{m_j + m_{\text{target}}} \right) \left(\frac{a_{\text{sc}}}{Z_j Z_{\text{target}} e^2} \right) E.
$$

(49)

The function $\zeta_j(\epsilon)$, depends on the energy distribution deposited into the target, and we used the derivation by Nozawa et al. (2006) for $\zeta_j \in [0, 3.56]$:

$$
\zeta_j(\epsilon) = \begin{cases}
0.2 & \zeta_j \leq 0.5, \\
0.1 \zeta_j^{-1} + 0.25 (\zeta_j - 0.5)^2 & 0.5 < \zeta_j \leq 1, \\
0.3 (\zeta_j - 0.6)^2 & 1 < \zeta_j.
\end{cases}
$$

(50)

4.3. Grain Charging

As grains move within the SN remnant, they will acquire/lose electrons and ions due to impacts with the plasma and photons. Several processes can influence

Table 1

Summary of Sputtering Yield and Escape Length (λ_{esc}) Parameters

<table>
<thead>
<tr>
<th>Dust Species</th>
<th>E_{bind} [eV]</th>
<th>Z_{target}</th>
<th>m_{target} [au]</th>
<th>κ</th>
<th>$\langle \xi \rangle_{\text{esc}}$</th>
<th>$R_m(\langle \xi \rangle_{\text{esc}})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>4.31</td>
<td>26</td>
<td>56</td>
<td>0.23</td>
<td>1.5662</td>
<td>1.1891</td>
</tr>
<tr>
<td>FeO</td>
<td>4.98†</td>
<td>17</td>
<td>36</td>
<td>0.15†</td>
<td>1.5918</td>
<td>1.1631</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>4.98†</td>
<td>15.2</td>
<td>32</td>
<td>0.15†</td>
<td>1.5935</td>
<td>1.1611</td>
</tr>
<tr>
<td>FeO$_4$</td>
<td>4.98</td>
<td>15.7</td>
<td>33.1</td>
<td>0.15</td>
<td>1.5993</td>
<td>1.1561</td>
</tr>
</tbody>
</table>

Values are from (Nozawa et al. 2006, and references therein).

Electron stopping ranges are based on outputs from the CASINO software (Drouin et al. 2007).

† The binding energy and κ parameters for FeO and Fe$_2$O$_3$ are assumed to be the same as Fe$_3$O$_4$.
the total charge of the grain, so the total charging rate, \(\frac{dq_{gr}}{dt} \) is:

\[
\frac{dq_{gr}}{dt} = \sum_j I_j ,
\]

(51)

which is summed over \(j \) processes of currents, \(I_j \). These currents are due to impinging plasma particles, \(I_{imp} \), and the associated secondary electrons emitted, \(I_{sec} \), transmitted plasma particles, \(I_{trans} \), and photoelectron emission, \(I_{e} \). The derivations are the same as used by Kimura & Mann (1998). However, these derivations are very computationally-intensive (see Appendix E for an in-depth discussion). In order to simplify calculations, we employ an analytic description of the charging processes.

If we compare the gyro period given in Eq. 37

\[
\tau_{gyro} = 34 \text{ yr} \left(\frac{\rho_{gr}}{7.87 \text{ g cm}^{-3}} \right) \left(\frac{2}{|\Phi|} \right) \left(\frac{1 \mu \text{G}}{B} \right) \times \left(\frac{10^6 \text{ K}}{T} \right) \left(\frac{a_{gr}}{0.1 \mu \text{m}} \right)^2 ,
\]

(52)

with a basic approximation for the charging time (for negative charging, Shankla & Mann 2002):

\[
\tau_{charge,e} = 0.06 \text{ yr} \left(\frac{T}{10^6 \text{ K}} \right) \left(\frac{n_{ISM}}{0.1 \text{ cm}^{-3}} \right) \left(\frac{a_{gr}}{0.1 \mu \text{m}} \right) \times \left(\frac{1}{1 + \sqrt{\frac{m_e}{m_{gr}}} \exp \left[- \left(\frac{v}{a_{gr}} \right) \right]} \right) ,
\]

(53)

we can see the charging time is much less than the gyro period (\(\tau_{charge,e} \ll \tau_{gyro} \)), allowing us to use an analytic approximation of the grain charge when solving for the grain’s gyroscopic motions (this means we no longer solve for \(\frac{dq_{gr}}{dt} \) in our system of ordinary differential equations). In order to employ a faster description of grain charging processes, we apply an analytic approach introduced by Shull (1978) and extended by McKee et al. (1987); in this approach we solve numerically for the steady-state value of the grain potential at various plasma temperatures (\(T \)), relative velocities (\(v_{rel} \)), and grain radii (\(a_{gr} \)), then fit a function to the results. It should be noted that this approach inherently ignores the cooling/heating history of the grains and the grain potential will be single-valued at a given temperature (for more information, see Meyer-Vernet 1982 Horanyi & Goertz 1990). However, because of Fe’s low secondary electron emission yield (\(\delta_{max,Fe} = 1.3 < 6 \)) our Fe grains should have single-valued potentials across all temperature values.

Within the SN remnant, the grain charge transitions through a range of values depending on the dominant charging process. Fig. 4 shows the results for selected values and the analytic fitting function, which takes the form:

\[
\Phi = [\Phi_{imp}(1 - \Psi_B) + \Phi_{stationary} + \Phi_{sec1} \Psi_B + \Phi_{sec2} \Psi_B \Psi_C \Psi_A \Psi_F (1 - \Psi_D)] + \Phi_{trans} \Psi_D \Psi_E + \Phi_{thermal} \Psi_B (1 - \Psi_D)(1 - \Psi_F) ,
\]

(54)

where the “\(\Phi \)” quantities represent the corresponding charging regime and the “\(\Psi \)” quantities are scaling functions that scale and transition between the different charging regimes.

At temperatures where the thermal velocity is much smaller than the relative velocity (\(v_T \ll v_{rel} \)), the side of the grain that is opposite from the relative motion is effectively shielded from impacting electrons/ions. Additionally, because the relative velocity dominates, the electrons and ions will impact the grain at similar frequency; this results in a nearly neutral grain charge (e.g., for \(v_{rel} = 10^{1.5} \text{ km s}^{-1} \), this occurs for \(T < 3 \times 10^3 \text{ K} \), see Fig. 4). As the thermal velocity approaches the relative velocity (\(v_T \lesssim v_{rel} \)), the frequency of impinging electrons will dominate over impinging ions, driving the grain charge negative:

\[
\Phi_{imp} = -0.084 + 1.112 \times 10^{-3} v_7^2 + \left(\frac{T_{rel}}{T_{5}} \right)^{0.75} ,
\]

(55)

\[
\Psi_A = \left[\frac{T_{5A}}{T_{5B}^{0.25} + T_{5B}^{0.25}} \right] \max \left[0, \frac{T_{tran} - T_{imp}}{T_{tran} - T_{imp}}, \right] ,
\]

(56)

with

\[
v_7 = \left(\frac{v_{rel}}{10^7 \text{ cm s}^{-1}} \right) ,
\]

\[
T_5 = \left(\frac{T}{10^5 \text{ K}} \right) ,
\]

\[
T_{rel} = 0.2506 v_7^2 ,
\]

\[
T_{imp} = 0.3433 v_7^2 ,
\]

\[
T_{tran} = \frac{10.57}{1 - \exp \left[- \left(\frac{\lambda_{esc}}{a_{gr}} \right)^{0.75} \right]} ,
\]

\[
\Theta_A = 36.99 ,
\]

\[
(e.g., for v_{rel} = 10^{1.5} \text{ km s}^{-1} \simeq T \approx 3 \times 10^3 \text{ K}).
\]

When the thermal velocity is about the same value as the relative velocity (\(v_T \approx v_{rel} \)), the grain charge will approach (but not reach in this case because of the inclusion of additional charging processes) its stationary value, \(\Phi_{stationary} \) (Spitzer 1941):

\[
\exp \left[\Phi_{stationary} \right] = \sqrt{\frac{m_e}{m_{ion}}} (1 - \Phi_{stationary}) .
\]

(57)

In solving for the steady-state values, we chose an approximate composition of the ECSN ejecta: \(n_H \approx 0.01 \text{ cm}^{-3} \), \(n_{He} \approx 1 \text{ cm}^{-3} \), \(n_{Fe} \approx 0.6 \text{ cm}^{-3} \), and \(n_{Ni} \approx 0.4 \text{ cm}^{-3} \). For this composition, since He is much more

\[\text{From Horanyi & Goertz (1990), the presence of multi-valued potentials occurs for substances with } \delta_{max} \gtrsim 6.\]
numerous than H, and He is much more mobile compared to the Fe and Ni atoms, the plasma will behave similar to a pure-He environment, so $m_{\text{ion}} \approx 4 \, m_u$, at least with respect to grain charging, and $\Phi_{\text{stationary}} \approx -3.049$ (e.g., for $v_{\text{rel}} = 10^{1.5} \, \text{km s}^{-1} \approx T \in (3 \times 10^3, 3 \times 10^4) \, \text{K}$).

At higher thermal velocities, secondary electron emission will begin to dominate ($v_T \gtrsim v_{\text{rel}}$), increasing the grain charge:

$$\Phi_{\text{sec1}} = 1.740 \left(1 - \exp \left[-0.1037 \, v_T^2 \right]\right) + 1.005, \quad (58)$$

$$\Phi_{\text{sec2}} = \max \left[0, -0.2267 \, v_T^2 + 1.430\right], \quad (59)$$

$$\Psi_B = \frac{T_{5}^{\Theta_B}}{T_{\text{sec1}}^{\Theta_B} + T_{\text{sec2}}^{\Theta_B}}, \quad (60)$$

$$\Psi_C = \frac{T_{5}^{\Theta_C}}{T_{\text{sec2}}^{\Theta_C} + T_{\text{sec1}}^{\Theta_C}}, \quad (61)$$

with

$$T_{\text{sec1}} = 3.404 \, v_T^2,$$

$$T_{\text{sec2}} = 34.82 \, v_T^{1.223},$$

$$\Theta_B = 38.48,$$

$$\Theta_C = 0.3545 \ln \left[v_T\right] + 1.563,$$

(e.g., for $v_{\text{rel}} = 10^{1.5} \, \text{km s}^{-1} \approx T \in (3 \times 10^4, 10^6) \, \text{K}$).

Near $T = 10^6 \, \text{K}$, the transmission/tunneling current will become important, further increasing the grain charge:

$$\Phi_{\text{tran}} = 0.1953 \, T_5^{-0.162}, \quad (62)$$

$$\Psi_D = \exp \left[- \left(\frac{T_{\text{cr}}}{T_{5}}\right)^4\right], \quad (63)$$

$$\Psi_E = \exp \left[-10^{-4} \left(\frac{a_{\text{gr}}}{\lambda_{\text{esc}}}\right)^4\right], \quad (64)$$

with

$$T_{\text{cr}} = \max \left[T_{\text{tran}}, T_{\text{imp}}\right],$$

(e.g., for $v_{\text{rel}} = 10^{1.5} \, \text{km s}^{-1} \approx T \in (10^6, 3 \times 10^7) \, \text{K}$).

At higher temperatures, the electrons and ions will again impact the grain at relatively similar frequencies, resulting in a relatively neutral grain charge:

$$\Phi_{\text{thermal}} = 0.1862 \ln \left[T_5\right] - 1.756, \quad (65)$$

$$\Psi_F = \exp \left[- \left(\frac{T_{5}}{T_{\text{thermal}}}\right)^4\right], \quad (66)$$

with

$$T_{\text{thermal}} = \max \left[703.8, 9.964 \, v_T^2\right], \quad (67)$$

(e.g., for $v_{\text{rel}} = 10^{1.5} \, \text{km s}^{-1} \approx T > 3 \times 10^7 \, \text{K}$).

Within the SN remnant, because of the extremely small dilution factor ($D = 10^{-22}$, Eq. 22), photoelectron emission plays almost no role in grain charging. However, outside the SN remnant, it becomes the dominant process, driving the grain potential to $U_{\text{gr}} = 5.6 \, \text{V}$, since it will be in interstellar space and subject to the ISRF (Draine & Salpeter 1979; Draine 2011).
Lastly, we also establish potential limits to account for field emission (McKee et al. 1987):

$$\Phi_{\text{min}} \leq \Phi \leq \Phi_{\text{max}},$$

with

$$\Phi_{\text{min}} = -11.6 \left(\frac{a_{\text{gr}}}{0.1 \mu m} \right) \left(\frac{10^5 \text{ K}}{T} \right),$$

$$\Phi_{\text{max}} = 348 \left(\frac{a_{\text{gr}}}{0.1 \mu m} \right) \left(\frac{10^5 \text{ K}}{T} \right).$$

This completes our description of the grain charge so that:

$$U_{\text{gr}}(r) = \begin{cases} \Phi k_B T / e & r \leq R_{\text{SN}}, \\ 5.6 \text{ V} & r > R_{\text{SN}}. \end{cases}$$

5. RESULTS

We have examined the trajectories for dust grains containing 56Fe in a SN remnant expanding into an ISM containing a turbulent magnetic field with a Kolmogorov spectrum ($\eta = -5/3$). We assumed the grains contained material located originally at $r = 0.6 \times 10^9$ cm at the beginning of the hydrodynamic simulation; this corresponds to the highest concentration of 56Fe within the ejecta (see Fig. 1). The 56Fe was assumed to condense into metallic-Fe grains 500 days after the SN explosion, which corresponds to $r_{\text{gr}} = 109 \text{ AU}$ and $v_{\text{gr}} = 375 \text{ km s}^{-1}$. We assume that the grain is entrained within its surrounding plasma cloud from the instant of the shock at $t = 5 \times 10^5$ yr. After the cloud dissipates and the grain is assumed to be first exposed to the shocked SN remnant environment, the simulation begins at $t_0 = 6700 \text{ yr}$, $r_{\text{gr},0} = 2.6 \text{ pc}$, $v_{\text{gr},0} = 375 \text{ km s}^{-1}$.

To begin with, we examined the unmagnetized case. This serves as a basis of comparison for our magnetized examinations, as well as a comparison with previous works (see e.g., Nozawa et al. 2007; Nath et al. 2008; Micelotta et al. 2010; Bocchio et al. 2016). For various grain sizes ($0.004 - 1 \mu m$), the grains demonstrate purely radial motion, gradually slowing as they approach the FS, see Fig. 5(a). As should be expected, the larger grains maintain their velocities relative to smaller grains due to the former’s greater mass. Qualitatively, we were able to reproduce the previous cited works’ results.

Next, we examined a variety of post-RS grain sizes ranging from $0.004 - 1 \mu m$ with a magnetized ISM, and ran the simulation multiple times to examine different configurations of the magnetic field, see Fig. 5(b). The $a_{\text{gr},0} = 0.1\mu m$ grains showed the most noteworthy trajectories, with some being reflected nearly radially backwards into the SN remnant, and others being deflected along the edge of the SN remnant. The $a_{\text{gr},0} = 1\mu m$ grains also showed strong reflections into the inner SN remnant. As the grains decrease in size, drag becomes more important; $a_{\text{gr},0} = 0.05\mu m$ grains will bounce off the ISM magnetic field, but not penetrate deeper into the SN remnant, because of drag. The influence of drag on $a_{\text{gr},0} = 0.004-\mu m$ grains is even more pronounced, with grains slowing to a stop relative to the plasma after $t \approx 5 \times 10^5$ yr (see Fig. 6) and not reaching ISM material.

The $a_{\text{gr},0} = 0.1-\mu m$ grains’ ‘pinball’ behavior is particularly dramatic. They experience some drag and sputtering, but this effect is relatively minor since the relative velocity $v_{\text{rel}} \approx 175 \text{ km s}^{-1}$, see Fig. 6. There is no deflection (i.e., non-radial motion) of the grain’s trajectory while the grain is traveling through pre-SN circumstellar material, see Fig. 7. This is because there is (effectively) no magnetic field in this material. In contrast, shortly after encountering shocked ISM material, the frozen-in ISM magnetic field reflects the grain back into the SN remnant. This action is repeated as the grain transits the SN remnant and again encounters shocked ISM material. The charged dust grains ricochet inside the magnetized ISM material like pinballs (this boundary is roughly equivalent to the contact discontinuity, see e.g., Wang & Chevalier 2002). Fig. 8 shows the grain penetrates the ISM material to some extent and allows us to verify that the grain is being reflected due to the magnetic field rather than a discontinuity inherent to our model.

Fig. 9 shows results from 50 runs with an initial $a_{\text{gr},0} = 0.1-\mu m$ grain. Almost every grain is reflected nearly opposite to its initial radial direction. Some grains show reflections closer to the outer edge of the SN remnant and presumably many of the grains reflected to the deeper portions of the SN remnant would exhibit similar behavior, but because our hydrodynamic code does not give environmental information for those regions, we did not plot those tracks. These features appear as ‘U’ or ‘W’-shaped trajectories in Fig. 9.

6. PREDICTIONS AND IMPLICATIONS

6.1. Predictions: SN Dust Confinement and Evolution

Given that propagation in the ISM magnetic field is the limiting mechanism for the larger SN dust grains, it is possible to estimate the maximum range for the dust grains within the SN remnant. Since the ISM material must be pushed away by the ejecta, we can assume the dust’s maximum range is where the total ejected and stellar wind material equals the swept up ISM material:

$$M_{\text{ej}} + M_{\text{wind}} = M_{\text{swept-up ISM}} = \frac{4}{3} \pi \rho_{\text{ISM}} R_{\text{dust}}^3,$$

$$\Rightarrow R_{\text{dust}} = 24 \text{ pc} \left(\frac{M_{\text{ej}} + M_{\text{wind}}}{90 M_\odot} \right)^{1/3} \left(\frac{0.61}{\rho_{\text{ISM}}} \right)^{1/3} \left(\frac{0.1 \text{ cm}^{-3}}{n_{\text{ISM}}} \right)^{1/3}. \quad (71)$$

For an observational comparison, the core-collapse SN remnant Sagittarius (Sgr) A East is ~ 10 kyr old and recent SOFIA observations have confirmed the presence of dust within the center of the SN remnant (Lau et al. 2015). The dust is confined to the inner ~ 2 pc diameter (Lau et al. 2015), while the outer radio shell (that corresponds to the FS) is has a diameter of ~ 7 pc (Maeda et al. 2002; Lau et al. 2015). Using the estimated conditions of the progenitor: $M_\odot = 2 M_\odot$ (Maeda et al. 2002), $M_{\text{wind}} = 10 M_\odot$ (Mezger et al. 1989), and $n_{\text{ISM}} = 1000 \text{ cm}^{-3}$ (Maeda et al. 2002; Lau et al. 2015),

6 It should be noted that 1-µm is an exceptionally large dust grain, and that we do not expect many, if any, such grains to form. We include them here for completeness.
Fig. 5.— Trajectories of metallic Fe-grains of varying initial sizes on a density contour. The 1-µm grains showed little influence by drag, exiting the SN remnant when no magnetic field is present, but experiencing strong reflections back into the SN remnant in the presence of a magnetized ISM. Most 0.1-µm grains experience similar strong reflections with a magnetized ISM, occasionally being deflected closer to the edge of the SN remnant, like the example shown in Fig. 5(b). The 0.05-µm grains experienced an initial reflection, but then were greatly influenced by drag. Both the 0.1- and 0.05-µm grains approach the FS in the unmagnetized case but do not cross it due to drag. The 0.004-µm grains were dominated by drag and never reached the shocked ISM magnetic field. The FS is shown as the dotted black curve, and the innermost limit of the hydrodynamic simulations is shown as the blacked-out region at the bottom of the chart.
this gives $R_{\text{dust}} = 0.57$ pc, which is in good agreement with the observed dust region of Sgr A East SN remnant.

6.2. Dust Delivery of Radioisotopes from Near-Earth SNe

The possibility of a Sco-Cen progenitor ($D \sim 130$ pc) as the source of the 60Fe seems extremely unlikely, given that magnetic fields restrict the movement of the larger (i.e., $a_{\text{gr}} \gtrsim 0.05$ μm) grains and drag halts the movement of smaller grains. Although Sco-Cen may have yielded a larger, more powerful progenitor (e.g., a 15-M_{\odot} CCSN [Hyde & Pecaut 2017], the additional explosive energy (E_{SN}) is not expected to be able to push back the ISM magnetic field over 100 pc. However, Tuc-Hor is still a likely source, as our simulation showed consistent dust propagation out to ~ 40 pc, which (considering the uncertainty in the initial ISM density) is consistent with the distance to Tuc-Hor (~45 – 60 pc).

The implications of magnetic reflections are that the grains are not confined to the shell region as assumed by Fry et al. (2015, 2016); Breitschwerdt et al. (2016); Feige (2010); Feige et al. (2017); Schulreich et al. (2017), but confined to the interior of the SN remnant. These reflections also alter the assumption of a plane-wave arrival of SN dust grains into the Solar System. It even appears likely that, after the SN remnant envelopes the Solar System, some dust grains will bounce off the contact discontinuity and approach Earth from a direction nearly opposite of the SN! Further characterization of the ISM density and magnetic field, varying the grain composition within the SN remnant. These include varying the ISM density and magnetic field, varying the grain composition/size, and examining the case in which there is no H/He envelope around the pre-SN star [Fremling et al. 2016].

The main effect we observe is magnetic mirroring, occurring at the interface between the SN ejecta and the shocked ISM. The reflected particle moves back into the SN ejecta, traversing the SN remnant until it encounters the ejecta/ISM interface again; effectively the dust grain has become a pinball within the SN remnant. The resulting motion is thus a series of ricochets inside the SN ejecta region. The presence of ISM magnetic fields means dust is not distributed throughout the entire SN remnant, but confined much deeper within the SN remnant.

Our results show that the inclusion of Rayleigh-Taylor instabilities is important. Fig. [9] shows that the grains enter the shocked medium as early as 6700 years after the explosion, rather than later at ~50 yr when the RS proceeds inward to the center of the SN remnant. By entering the shocked plasma earlier, grains are subject to erosion and drag longer.

Lastly, the presence of magnetic reflections also suggest that grain-grain interactions and shattering due to shock crossings may not be entirely negligible. The grain reflections into the SN remnant greatly increase the likelihood of collisions compared to the purely radial trajectories assumed to date. Additionally, as seen in Fig. [9], grains crossing the RS multiple times will be subject to repeated shattering, reducing the likelihood for long-term survival (see also Williams & Temim 2016).

The overarching message of our study is that magnetic fields have a dramatic effect on the evolution of SN dust. This has important implications not only for the terrestrial and lunar deposition of 60Fe and other radioisotopes, but also for the evolution of dust in SN remnant generally. We will explore these implications more in future work.

Further simulations using other radioisotopes are planned. Based on these 60Fe results, it appears that 26Al and 41Ca (which form in the front portion of the ejecta, making them more likely to encounter the RS before 60Fe) will be exposed to the hot SN remnant plasma earlier. Since their density is less than metallic Fe, they will be more sensitive to drag and the magnetic fields due to their lower mass. A portion of 53Mn is synthesized slightly deeper in the ejecta and may form MnS, but the bulk of 41Ca and 53Mn are deeper in the ejecta than 60Fe. The question remains into what type of dust, if any, they will be incorporated. Additional simulations are also planned to characterize fully the dust grains’ movements within the SN remnant. These include varying the ISM density and magnetic field, varying the grain composition/sizes further, and examining the case in which there is no H/He envelope around the pre-SN star [Fremling et al. 2016].

B.J.F. would like to thank Paul Duffell for his assistance in using the RT1D code, and Shinya Wanajo for kindly sharing his ECSN nucleosynthesis data; this work would not have been possible without either. B.J.F.
Fig. 6.— Summary of grain parameters for a sample 0.1-μm metallic Fe-grain. The top, left panels are projections of the grain’s positions onto the $x - y$- (upper left) and $x - z$-planes (center left) with the yellow star representing the site of the SN. The upper center plot shows the grain’s radial position with the dashed, red line indicating the boundary of the hydrodynamic simulations. The first reflection occurs just before $t \approx 10^5$ yr, and the second reflection at $t \approx 3 \times 10^5$ yr. The rate of deceleration due to drag changes as the grain moves through different densities (bottom left) and is most pronounced following reflections, when the relative velocity between the grain and plasma is greatest (center). The rate of grain erosion due to sputtering remains fairly constant throughout the entire simulation (upper right), but the grain potential makes sharp fluctuations while generally staying negative (center right) and strongly mirrors the temperature fluctuations (bottom right). The dashed red line on the Grain Radius plot represents the sputtering limit; below this, the grain is assumed to have been destroyed. The bottom center plot shows the pre-SN material the grain passes through; -1 is pure ejecta, 0 is pure wind, and 1 is pure ISM material with fractional values representing mixtures (there is no ISM/ejecta mixing). The grain’s reflections directly correlate to the grain’s encounters with ISM material.
19

Fig. 7.— Three-dimensional plot of a sample 0.1-µm metallic Fe-grain. The yellow lines are the 3-D plot of the grain trajectory with the green, red, and blue lines showing the $x-y$, $x-z$, and $y-z$-planes respectively. The stars represent the location of the SN. Note: this is the same sample shown in Fig. 6.

Fig. 8.— The azimuthal trajectory of a sample 0.1-µm metallic Fe-grain along its initial radial direction. The grain path is shown as a solid blue line until reflection, and a dashed, blue line afterwards. The red lines are the magnetic field lines at the moment of reflection ($t \approx 89$ kyr, $r \approx 31$ pc). Note the stretching of the magnetic field parallel to the FS and the lack of a magnetic field interior to 28 pc representing pre-SN stellar and wind material. Because of mixing of the wind and ISM material, the magnetic field gradually increases in strength, until strong enough to reflect the dust grain.

would also like to thank Jenny Feige for her comments and suggestions regarding this work. We are grateful for encouragement and illuminating discussions with Paul Ricker, Charles Gammie, Ada Ertel, and Jesse Miller.

The work of J.E. is supported in part by STFC (UK) via the research grant ST/L000326/1, and in part by the Estonian Research Council via a Mobilitas Pluss grant.

APPENDIX

A. LIST OF VARIABLES

Variable - Description [common value or unit of measure]

* - (as superscript) parameter in characteristic units [dimensionless]
\parallel - (as subscript) parallel component
\perp - (as subscript) perpendicular component
0 - (as subscript) ‘initial value for simulation’
a_{gr} - radius of dust grain [µm]
a_{cloud} - radius of cloud [km]
a_{sc} - screening length [µm]
A - magnetic vector potential [G cm]
A_0 - local vector potential [G cm2]
α - angle [radians]
b - perturbed magnetic field [G]
B - magnetic field [G]
c - speed of light [$\sim 3 \times 10^5$ km s$^{-1}$]
C_{abs} - absorption cross-section [cm2]
C_{coll} - collisional cross-section [cm2]
ch - (as subscript) ‘characteristic scale’
C - scaling constant [G2 pc2]
χ - generic/dummy variable [dimensionless]
D - distance to Earth [pc]
D - dilution factor [dimensionless]
δ_j - secondary electron yield [dimensionless]
δ_{max} - maximum yield from a bulk solid [dimensionless]
Δ_j - penetration threshold energy [eV]
e - elementary charge [4.803×10^{-10} Fr]
E - energy [erg]
E_1 - energy constant [eV]
E_2 - energy constant [keV]
E_{bind} - binding energy [eV]
E_e - most probable energy from electrons [eV]
E_{γ} - most probable energy from photons [eV]
E_{H} - ionization energy of hydrogen [13.6 eV]
E_{ion} - most probable energy from ions [eV]
E_{low} - minimum photoelectric emission energy [eV]
E_{max} - energy at maximum yield from a bulk solid [eV]
E_{min} - minimum emission energy [eV]
E_{SN} - energy of SN [erg]
E_{th} - threshold energy [eV]
E_s - specific energy [erg g$^{-1}$]
ϵ - reduced energy [dimensionless]
η - spectral index [dimensionless]
f_1 - fitting function [dimensionless]
f_2 - fitting function [dimensionless]
f_1 - Maxwellian velocity distribution function [dimensionless]
fin - (as subscript) ‘final value’
F - force [dyn]
F - fluence [atoms cm$^{-2}$]
F_{mag} - magnetic flux [G cm2]
$F_{\gamma,\nu}$ - spectral photon flux [photons cm$^{-2}$ s$^{-1}$ eV$^{-1}$]
g - maximum fraction energy transfer [dimensionless]
G_0 - collisional drag function [dimensionless]
G_2 - Coulomb drag function [dimensionless]
Γ - adiabatic index [dimensionless]
Fig. 9.— Multiple trajectories of metallic Fe-grains on a density contour. Fifty grain trajectories (plotted in yellow) are shown with an initial grain radius of $a_{gr} = 0.1\,\mu m$. The grain trajectory prior to cloud crushing is shown with dashed, yellow lines and solid, yellow lines when the cloud has dissipated and the grain is exposed the SN remnant plasma. Note that most grains remain in the $r \lesssim 40\,\text{pc}$ region while bouncing within the shell. The FS is shown with the dotted, black curve, and the inner most limit of the hydrodynamic simulations are shown with the blacked-out region at the bottom of the chart.

h - Planck’s constant [$6.626 \times 10^{-27}\,\text{erg s}^{-1}$]
ini - (as subscript) ‘initial value’
\mathcal{L} - charge current [Fr s$^{-1}$]
\mathbf{J} - charge current density [Fr cm$^{-2}$ s$^{-1}$]
k - (as subscript) ‘Fourier counterpart’
k - wavenumber [cm$^{-1}$]
k_B - Boltzmann constant [$1.38 \times 10^{-16}\,\text{erg K}^{-1}$]
κ - sputtering free parameter [dimensionless]
l - length [cm]
λ - length scale [km]
Λ - charge parameter [dimensionless]
m - mass (e.g., of p^+, e^-, H, dust grain, etc.) [g]
n_{At} - atomic mass unit [$1.66 \times 10^{-24}\,\text{g}$]
n_{sp} - sputtered mass [g]
M_{ej} - mass of the ejecta [M_\odot]
M_{encl} - mass enclosed in spherical shell [M_\odot]
M_{wind} - stellar wind mass loss [$M_\odot\,\text{yr}^{-1}$]
μ_{ej} - mean mass of the ejecta [dimensionless]
μ_{encl} - mean mass of the stellar envelope [dimensionless]
ρ_{ISM} - mean mass of the ISM [dimensionless]
n - number density [cm$^{-3}$]
N - number of values/points [dimensionless]
\mathbb{N} - material current [cm s$^{-1}$]
ν - frequency [Hz]
ω - grain penetration factor [dimensionless]
Ω - solid angle [sr]
p - momentum [g cm s$^{-1}$]
P - pressure [dyn cm$^{-2}$]
\mathcal{P} - specific power [erg cm2 g$^{-1}$]
ϕ - angle [radians]
Φ - potential parameter [dimensionless]
ψ - radial basis function [dimensionless]
\mathcal{L}_c - electron range power index [dimensionless]
q_{gr} - charge of grain [Fr]
r - radial position [cm]
R_{bounce} - position at bounce [cm]
R_e - electron range [nm]
R_{gyro} - gyro radius [pc]
R_{rn} - reduced range [dimensionless]
R_{SN} - position of forward shock [pc]
R - range constant [nm]
ρ - mass density (e.g., of ISM, etc.) [g cm$^{-3}$]
ρ_{gr} - mass density of grain [g cm$^{-3}$]
ρ_e - energy distribution for secondary electrons emitted by electrons [eV$^{-1}$]
q_e - energy distribution for secondary electrons emitted by photons [eV$^{-1}$]
q_{ion} - energy distribution for secondary electrons emitted by ions [eV$^{-1}$]
s - velocity parameter [dimensionless]
S - stopping cross section [cm2 erg]
S - scaling factor [cm$^{-2}$]
σ_A - standard deviation of the magnetic vector
potential [G pc$^{-1}$]
ς - elastic reduced stopping cross section [1]
t - time [s]
T - temperature [K]
$T_0 ≡ T (10^5 \text{ K})^{-1}$ [dimensionless]
$\tau_{1/2}$ - half-life [Myr]
τ_{cc} - cloud crushing time [yr]
τ_{gyro} - gyro period [yr]
θ - angle [radians]
u - perturbed velocity [cm s$^{-1}$]
U_{gr} - potential of dust grain [V]
v - velocity [cm s$^{-1}$]
v_7 - velocity of grain relative to center of explosion [cm s$^{-1}$]
v_{ej} - velocity of the ejecta [km s$^{-1}$]
v_{esc} - escape velocity [km s$^{-1}$]
v_{rel} - relative velocity [km s$^{-1}$]
v_{RS} - relative velocity of reverse shock [km s$^{-1}$]
v_T - thermal velocity [km s$^{-1}$]
v_{wind} - stellar wind velocity [km s$^{-1}$]
W - work function [eV]
ξ - sputtering function [dimensionless]
X - composition fraction [dimensionless]
Y^0 - backward sputtering yield at normal incidence [atoms ion$^{-1}$]
Z - charge number [dimensionless]

B. TURBULENT MAGNETIC FIELD

We begin by assuming the ISM has fully-developed and stationary (time-translation invariant) MHD turbulence that is homogeneous and isotropic. We define the turbulent field’s total velocity, v, and magnetic field, B, at a point, x:

\[
\begin{align*}
\langle v \rangle &= \langle v \rangle + u(x) = v_k + u_k, \\
B(x) &= \langle B \rangle + b(x) = B_k + b_k,
\end{align*}
\]

where $\langle v \rangle$ and $\langle B \rangle$ are the average velocity and magnetic fields respectively, and u and b are the perturbed velocity and magnetic fields respectively, and the subscript, k, denotes the Fourier counterpart (i.e., $B(x) = B_k$). Because the turbulence is homogeneous and isotropic, we assume $\langle B \rangle ≈ 0 ⇒ B(x) ≈ b(x)$. Additionally, by Fourier analysis, the specific energy spectrum, \mathcal{E}_k, of the turbulence is:

\[
\mathcal{E}_k = \frac{1}{2} \langle u_k^2 \rangle + \frac{1}{8 \pi \rho} \langle b_k^2 \rangle,
\]

where ρ is the average mass density of the ISM. For fully-developed turbulence, we assume equipartition between the kinetic and magnetic energies $\left(\frac{1}{2} \langle u_k^2 \rangle \approx \frac{1}{8 \pi \rho} \langle b_k^2 \rangle \right) ⇒ \mathcal{E}_k \propto \langle b_k^2 \rangle$. In the typical description of turbulence, energy is injected into the system at some outer scale ($\lambda_{\text{outer}} = 2 \pi / k_{\text{outer}}$), and cascades from larger to smaller scales according to a power-law relation ($\mathcal{E}_k \sim k^n$), until it is dissipated at some inner scale ($\lambda_{\text{inner}} = 2 \pi / k_{\text{inner}}$) by viscous forces.

In order to create a vector field with this behavior, we use the technique outlined by Efstathiou et al. (1985) and applied to turbulence in several papers (e.g., Dubinski et al. 1995, Wallin et al. 1998, Wiebe & Watson 1998, Watson et al. 2001). Most of these examples used this technique to generate incompressible velocity fields (i.e., $\nabla \cdot v = 0$) but, since we require our magnetic field to be divergence-free (i.e., $\nabla \cdot B = 0$), this technique is appropriate here as well.

First, we calculate the specific power spectrum, \mathcal{P}, from the energy spectrum of the desired field:

\[
\mathcal{E}_k dk = \mathcal{P}_k d^3k \Rightarrow \mathcal{P}_{k,B} ≡ \langle |B_k|^2 \rangle \sim k^{n-2}.
\]

The magnetic field is divergence-free, $\nabla \cdot B = 0$, so:

\[
B = \nabla \times A = B_k = i k \times A_k,
\]

where A is the vector potential of the magnetic field. This implies that the power spectrum of the potential is:

\[
\mathcal{P}_{k,A} ≡ \langle |A_k|^2 \rangle \sim k^{n-4},
\]

for the Fourier components that are described by a Gaussian distribution (Dubinski et al. 1995). In order to prevent an increase in the spectrum beyond scales where the energy is injected, a cutoff wavenumber is introduced so that $\langle |b_k|^2 \rangle ∼ (k_0^2 + k^2)^{(n-4)/2}$.

The vector components of A_k (both real and imaginary) are generated via a Gaussian distribution (Wallin et al. 1998):

\[
f(A_k; \sigma_A) = \frac{1}{\sigma_A \sqrt{2 \pi}} \exp \left[-\frac{A_k^2}{2 \sigma_A^2} \right],
\]

where σ_A is the standard deviation and \mathbb{C} is a constant that is the same for all components and is adjusted to scale to the desired value of $\langle B \rangle$. The value of B_k is then found by Eq. B4, then the inverse Fourier transform of B_k is taken to find $B(x)$. The corresponding positions for $B(x)$ are found by $\{x, y, z\} = 2\pi / \{k_x, k_y, k_z\}$, see Fig. 10.

The spectral index, n, is chosen based on the desired phenomenology: for example, the Kolmogorov spectrum (Kolmogorov 1941, Goldreich & Sridhar 1995): $n = -5/3$, the Iroshnikov-Kraichnan/strong spectrum (Iroshnikov 1964, Kraichnan 1965): $n = -3/2$, and the universal/weak spectrum: $n = -2$. The Kolmogorov spectrum assumes an incompressible fluid which is not the case in most astrophysical environments. Nevertheless, as noted by Dubinski et al. (1995), Goldreich & Sridhar (1995), this spectrum appears in many contexts including solar wind turbulence (Matthaeus & Goldstein 1982).

This procedure will create a turbulent field within a λ_{outer}^3 grid, see Fig. 3. In order to fill in more volume while minimizing computation time and memory,
where \(\psi \) and \(\lambda \) are unknown, but since \(\lambda \) is met, namely \(\lambda = 0 \) as the curl of a vector potential, it will be divergence-free everywhere (\(\nabla \cdot B = 0 \)). Secondly, the scheme should yield the value of the data input magnetic field, \(B_i \), at each data point, \(x_i \), i.e., \(B(x_i) = B_i(x_i) \), see also McNally (2011).

To begin, let an individual magnetic field, \(B_i \), be the curl of a vector potential, \(A_i \), such that \(B_i = \nabla \times A_i \). The total magnetic field is the superposition of the \(N \) individual fields:

\[
B = \sum_{i=1}^{N} B_i = \sum_{i=1}^{N} \nabla \times A_i. \tag{C1}
\]

In addition, we define another vector field, \(\psi(r) A_i \), at a position, \(r \), such that \(A_i \) is the value of the field at \(r = 0 \) and \(\psi(r) \) is a scaling function with the properties that \(\psi = 1 \) at \(r = 0 \), \(\psi \to 0 \) as \(r \to \infty \), and \(\psi \geq 0 \ \forall \ r \). Although several functions satisfy these properties, for convenience we chose \(\psi(r) \equiv \exp \left[-5r^2 \right] \) where \(r^2 = x^2 + y^2 + z^2 \) and \(x, y, \) and \(z \) are the components of \(r \). The scaling factor, \(S \), adjusts the influence of the data value at range \(r \). We chose a value of the reciprocal mean of the squared ranges to the data points: \(S_i = 1/\langle r_i^2 \rangle \).

We then define the vector potential, \(A_i \), at a position, \(x \), in terms of the new vector, \(\psi \lambda A_i \):

\[
A_i(x) = \nabla \times (\psi(x - x_i) \lambda_i) \tag{C2}
\]

where \(\lambda_i \) is the value of the vector potential at \(x_i \). This means that the entire vector potential, \(A_i \), can be defined in terms of a single vector, \(\lambda_i \).

Combining Eq. \(C1 \) and Eq. \(C2 \) we can define the total magnetic field, \(B(x) \) at a position \(x \), as the superposition of \(N \) vectors, \(\lambda_i \), scaled by a radial basis function, \(\psi \):

\[
B(x) = \sum_{i=1}^{N} \nabla \times A_i(x) = \sum_{i=1}^{N} \nabla \times (\nabla \times (\psi(x - x_i) \lambda_i))
\]

\[
= \sum_{i=1}^{N} \left[\nabla (\nabla \cdot (\psi(x - x_i) \lambda_i)) - \nabla^2 (\psi(x - x_i) \lambda_i) \right]. \tag{C3}
\]

At this point, the \(N \) values of \(\lambda_i \) are unknown, but since we are interpolating over \(N \) data points, \(B_i \), we can set up a system of \(N \) equations to solve for the unknowns:

\[
B_j(x_j) = \sum_{i=1}^{N} \nabla \times (\nabla \times (\psi(x_j - x_i) \lambda_i)). \tag{C4}
\]

This ensures the second property of our desired scheme is met, namely \(B(x_i) = B_i(x_i) \).

Lastly, because we originally defined the magnetic field as the curl of a vector potential, it will be divergence-free by construction, since the divergence of a curl is always zero \(\nabla \cdot (\nabla \times A) = 0 \). However, we can check our final scheme as well to verify that our introduction of an addition vector field, \(\lambda \) has not altered this property.

Fig. 10.— Sample power spectra for MHD turbulence. The left panel (a) shows the generated grid power spectrum for a Kolmogorov profile \(\xi_k \sim k^{-5/3} \) with \(C = 1 \ G^2 \ pc^2 \ \lambda_{\text{outer}} = 0.5 \ pc \), and \(\lambda_{\text{inner}} = 0.005 \ pc \). The right panel (b) shows the interpolated field power spectrum for the same profile. The dashed line is shown for reference.

The scaling factor, \(S \), adjusts the influence of the data points/values, it is first helpful to stipulate the properties of the final scheme. First, the interpolated grid values of \(B(x) \) can now be interpolated in order to find the initial \(B(x) \) field at all points.

C. INTERPOLATING THE MAGNETIC FIELD

In creating a scheme for interpolating a magnetic field, \(B \), from \(N \) data points/values, it is first helpful to stipulate the properties of the final scheme. First, the interpolated field must satisfy Gauss’ Law for Magnetic Fields, i.e., the magnetic field should be divergence-free everywhere (\(\nabla \cdot B = 0 \)). Secondly, the scheme should yield the value of the data input magnetic field, \(B_i \), at each data point, \(x_i \), i.e., \(B(x_i) = B_i(x_i) \), see also McNally (2011).

The total magnetic field is the superposition of the \(N \) individual fields:

\[
B = \sum_{i=1}^{N} B_i = \sum_{i=1}^{N} \nabla \times A_i. \tag{C1}
\]
Using Eq. [C3] we find:
\[
\nabla \cdot B = \sum_{i=1}^{N} [\nabla \cdot (\nabla \cdot (\psi(x-x_i)A_i))] - \nabla \cdot (\nabla^2 (\psi(x-x_i)A_i))
\]
\[
= \sum_{i=1}^{N} [\nabla^2 (\nabla \cdot (\psi(x-x_i)A_i))] - \nabla^2 (\nabla \cdot (\psi(x-x_i)A_i)) = 0.
\]
Therefore, our interpolated magnetic field remains divergence-free.

D. FLUX FREEZING WITH SPHERICAL SYMMETRY

In the case of a spherical expansion of a plasma, the magnetic fields will be “frozen in” the plasma as it expands. If the expansion of the fluid can be determined entirely by the basic (i.e., non-MHD) fluid equations, then it is possible to solve for the magnetic field as the plasma expands. Using the integral definition of magnetic flux:
\[\Phi_{\text{mag}} = \oint B \cdot dA, \]
the initial and final magnetic fluxes through the surface containing a fluid element will be the same, i.e., \(\Phi_{\text{mag,ini}} = \Phi_{\text{mag,fin}} \). Since we are following a particular fluid element, the mass contained within will remain the same as well, i.e., \(m_{\text{ini}} = m_{\text{fin}} \).

Using a spherical coordinate system with the origin at the center of the expansion, we define a fluid element with differential volume:
\[dV = r^2 \sin \theta \, dr \, d\theta \, d\phi, \tag{D1} \]
and differential areas:
\[dA_{\text{face}} = r^2 \sin \theta \, d\theta \, d\phi = r^2 \, d\Omega, \tag{D2} \]
\[dA_{\text{top}} = r \sin \theta \, dr \, d\phi, \tag{D3} \]
\[dA_{\text{side}} = r \, dr \, d\phi, \tag{D4} \]
with \(dA_{\text{face}} \) the surface facing the direction of expansion, \(dA_{\text{top}} \) the upper surface, and \(dA_{\text{side}} \) one of the side surfaces of the fluid element. The remaining three surfaces of the fluid element have the same areas, but because of the Gauss' Law (\(\oint B \cdot dA = 0 \)), we focus on three sides only.

As the fluid element moves away from the origin, by spherical symmetry, the angular properties of the fluid element will remain the same:
\[d\theta_{\text{ini}} = d\theta_{\text{fin}}, \quad d\phi_{\text{ini}} = d\phi_{\text{fin}}, \quad \sin \theta_{\text{ini}} = \sin \theta_{\text{fin}}, \]
\[\sin \theta_{\text{ini}} d\theta_{\text{ini}} d\phi_{\text{ini}} = \sin \theta_{\text{fin}} d\theta_{\text{fin}} d\phi_{\text{fin}} \]
\[\Rightarrow d\Omega_{\text{ini}} = d\Omega_{\text{fin}}. \tag{D5} \]
Additionally, the fluid element will compress and expand, but while its mass will remain constant, its density will change:
\[\rho_{\text{ini}} = \frac{m_{\text{ini}}}{r_{\text{ini}}^2 dr_{\text{ini}} d\Omega_{\text{ini}}}, \quad \rho_{\text{fin}} = \frac{m_{\text{fin}}}{r_{\text{fin}}^2 dr_{\text{fin}} d\Omega_{\text{fin}}}, \tag{D6} \]
\[\Rightarrow \rho_{\text{ini}} r_{\text{ini}}^2 dr_{\text{ini}} = \rho_{\text{fin}} r_{\text{fin}}^2 dr_{\text{fin}} \]
\[\Rightarrow \frac{dr_{\text{ini}}}{dr_{\text{fin}}} = \frac{\rho_{\text{fin}} r_{\text{fin}}^2}{\rho_{\text{ini}} r_{\text{ini}}^2}. \tag{D7} \]
For an infinitesimally small fluid element, the magnetic field will be uniform throughout the entire fluid element, and we can decompose the vector \(B \) into a component parallel to the direction of expansion, \(B_{\parallel} \), and a component orthogonal to the direction of expansion, \(B_{\perp} \):
\[B_{\perp} = B \times \hat{r}, \quad B_{\parallel} = (B \cdot \hat{r}) \hat{r}, \tag{D8} \]
\[B = B_{\parallel} + B_{\perp}, \quad B^2 = B_{\parallel}^2 + B_{\perp}^2. \tag{D9} \]

With these definitions, we can calculate the flux through each surface:
\[d\Phi_{\text{mag}} = B \cdot dA \tag{D10} \]
\[\Rightarrow d\Phi_{\text{mag,face}} = B_{\parallel} r^2 \, d\Omega \]
\[\Rightarrow B_{\parallel,\text{ini}} r_{\text{ini}}^2 d\Omega_{\text{ini}} = B_{\parallel,\text{fin}} r_{\text{fin}}^2 d\Omega_{\text{fin}}, \]
\[B_{\parallel,\text{fin}} = B_{\parallel,\text{ini}} \left(\frac{r_{\text{ini}}}{r_{\text{fin}}} \right)^2. \tag{D11} \]
Defining \(\alpha \) as the angle between the normal of the top surface and \(B_{\perp} \):
\[d\Phi_{\text{mag, top}} = B_{\perp} \cos \alpha \, r \sin \theta \, dr \, d\phi \]
\[\Rightarrow B_{\perp,\text{ini}} \cos \alpha_{\text{ini}} r_{\text{ini}} \sin \theta_{\text{ini}} dr_{\text{ini}} d\phi_{\text{ini}} = \]
\[= B_{\perp,\text{fin}} \cos \alpha_{\text{fin}} r_{\text{fin}} \sin \theta_{\text{fin}} dr_{\text{fin}} d\phi_{\text{fin}} \]
\[\Rightarrow B_{\perp,\text{fin}} = B_{\perp,\text{ini}} \left(\frac{\cos \alpha_{\text{ini}}}{\cos \alpha_{\text{fin}}} \right) \left(\frac{r_{\text{ini}}}{r_{\text{fin}}} \right) \left(\frac{dr_{\text{ini}}}{dr_{\text{fin}}} \right). \tag{D12} \]
Using Eq. [D7] we have:
\[B_{\perp,\text{fin}} = B_{\perp,\text{ini}} \left(\frac{\cos \alpha_{\text{ini}}}{\cos \alpha_{\text{fin}}} \right) \left(\frac{r_{\text{ini}}}{r_{\text{fin}}} \right) \left(\frac{r_{\text{fin}}^2}{r_{\text{ini}}^2} \right) \tag{D13} \]
\[\Rightarrow B_{\perp,\text{fin}} = B_{\perp,\text{ini}} \left(\frac{\cos \alpha_{\text{ini}}}{\cos \alpha_{\text{fin}}} \right) \left(\frac{\rho_{\text{fin}} r_{\text{fin}}}{\rho_{\text{ini}} r_{\text{ini}}} \right). \tag{D14} \]
Using Eq. [D7] we have:
\[B_{\perp,\text{fin}} = B_{\perp,\text{ini}} \left(\frac{\sin \alpha_{\text{ini}}}{\sin \alpha_{\text{fin}}} \right) \left(\frac{r_{\text{ini}}}{r_{\text{fin}}} \right) \left(\frac{r_{\text{fin}}^2}{r_{\text{ini}}^2} \right) \tag{D15} \]
\[\Rightarrow B_{\perp,\text{fin}} = B_{\perp,\text{ini}} \left(\frac{\sin \alpha_{\text{ini}}}{\sin \alpha_{\text{fin}}} \right) \left(\frac{\rho_{\text{fin}} r_{\text{fin}}}{\rho_{\text{ini}} r_{\text{ini}}} \right). \tag{D16} \]
In order for both Eq. [D13] and Eq. [D16] to be true we must have:
\[\Rightarrow \cos \alpha_{\text{ini}} = \frac{\sin \alpha_{\text{ini}}}{\sin \alpha_{\text{fin}}} = 1 \tag{D17} \]
\[\Rightarrow B_{\perp,\text{fin}} = B_{\perp,\text{ini}} \left(\frac{\rho_{\text{fin}} r_{\text{fin}}}{\rho_{\text{ini}} r_{\text{ini}}} \right). \tag{D18} \]
Combining Eq. [D11] and Eq. [D18] gives a means of relating initial conditions and final densities to the final
magnetic field. An example of the flux-freezing transformation is shown in Fig. 11.

E. GRAIN CHARGING

As grains move within the SN remnant, they will acquire/lose electrons and ions due to impacts with the plasma or photons. Several processes can influence the total charge of the grain, so the total charging rate, \(dq_{gr} / dt \) is:

\[
dq_{gr} \frac{dt}{dt} = \sum_i I_i, \tag{E1}
\]

which is summed over \(i \) processes of currents, \(I_i \). These currents are due to impinging plasma particles, \(I_{imp} \), and the associated secondary electrons emitted, \(I_{see} \), transmitted plasma particles, \(I_{trans} \), and photoelectron emission, \(I_\gamma \). The following derivations are the same as used by Kimura & Mann (1998).

E.1. Impinging Ions/Electrons

Charging by impinging plasma particles is caused by incident ions/electrons, \(j \), impacting the surface of the grain, sticking, and altering the grain charge. It is given by Dwek & Arendt (1992):

\[
I_{imp} = 2\pi e \sum_j \left\{ Z_j \int_{v_A}^{\infty} dv_T \right. \\
\times \left. \int_0^\pi d\theta \ C_{coll,j}(v_T,\theta)f_j(v_T,\theta)v_T^3 \sin \theta \right\}, \tag{E2}
\]

where \(v_T \) is the thermal velocity of the plasma. The minimum impinging velocity, \(v_A \), is given by:

\[
v_A = \begin{cases}
0 & Z_j\Phi_j \leq 0, \\
(2Z_jeU_{gr}/m_j)^{1/2} & Z_j\Phi_j > 0,
\end{cases} \tag{E3}
\]

with the collisional cross-section, \(C_{coll,j}(v_T) \), given by:

\[
C_{coll,j}(v_T) = \pi a_{gr}^2 \left(1 - \frac{2Z_jeU_{gr}}{m_j v_T^2}\right). \tag{E4}
\]

Because the dust grains will potentially have large relative velocities to the plasma, as well as large thermal velocities, we assume a Maxwellian velocity distribution, \(f_j(v_T,\theta) \):

\[
f_j(v_T,\theta) = n_j \left(\frac{m_j}{2\pi k_B T} \right)^{3/2} \\
\times \exp \left[- \frac{m_j}{2k_B T} \left(v_T^2 + v_{rel}^2 - 2v_T v_{rel} \cos \theta \right) \right], \tag{E5}
\]

where \(\theta \) is the angle between the thermal and relative velocities.

E.2. Secondary Electron Emission

If the impinging plasma particles have sufficient initial energy, \(E_{ini} = 2k_B T + Z_j eU_{gr} \) (Draine & Salpeter 1979; McKee et al. 1987; Kimura & Mann 1998), then after initially ejecting an electron, there is sufficient energy to eject additional electrons. In this situation, the
current of secondary electrons, \(I_{\text{see}} \), is:
\[
I_{\text{see}} = 2\pi e \sum_j \left\{ \delta_j(E_{\text{ini}}) \int_{E_{\text{min}}}^{\infty} dE \varphi_j(E) \right. \\
\times \int_{v_A}^{\infty} dv_T \int_0^\pi d\theta \ C_{\text{coll},j}(v_T) f_j(v_T, \theta) v_T^2 \sin \theta, \tag{E6}
\]
where the minimum required energy is \(E_{\text{min}} = \max[0, e U_{\text{gr}}] \). The type and energy of impacting plasma particles will determine the effectiveness of secondary emission, so the secondary electron yield, \(\delta_j(E_{\text{ini}}) \), is given for electrons by (Draine & Salpeter 1979):
\[
\delta_e(E_{\text{ini}}) = \max \left\{ \frac{8(E_{\text{ini}}/E_{\text{max}})}{1 + E_{\text{ini}}/E_{\text{max}}} \left(1 - \exp \left[-\frac{4a_{\text{gr}}}{3\lambda_{\text{esc}}} \right] \right) \right. \\
\times f_1 \left(\frac{4a_{\text{gr}}}{3R} \right) f_2 \left(\frac{a_{\text{gr}}}{\lambda_{\text{esc}}} \right), \tag{E7}
\]
where the fitting functions, \(f_1 \) and \(f_2 \), are given by:
\[
f_1(\chi) = \frac{1.6 + 1.4\chi^2 + 0.54\chi^4}{1 + 0.54\chi^4}, \tag{E8}
\]
\[
f_2(\chi) = \frac{1 + 2\chi^2 + \chi^4}{1 + \chi^4}, \tag{E9}
\]
and the escape length for electrons, \(\lambda_{\text{esc}} \), is:
\[
\lambda_{\text{esc}} = R_e(E_{\text{max}}/R_m(E_e)^{0.3}), \tag{E10}
\]
where the value of \(R_m \) is given for various materials in Table 1. The maximum yield from a bulk solid, \(\delta_{\text{max}} \), at energy, \(E_{\text{max}} \), is assumed to be 1.3 and 400 eV respectively (CRC Handbook of 2008). The secondary yield for ions is given by the empirical formula in Draine & Salpeter (1979):
\[
\delta_{\text{iom}}(E_{\text{ini}}) = 0.12 Z_j^2 \frac{1 + (m_H/m_j)(E_{\text{ini}}/E_1)}{1 + (m_H/m_j)(E_{\text{ini}}/E_2)} \times \left\{ \begin{array}{l}
1 \quad U_{\text{gr}} \leq 0, \\
1 + \left(\frac{U_{\text{gr}}}{1V} \right)^2 \quad U > 0, \end{array} \right. \tag{E11}
\]
where \(E_1 = 500 \text{ eV} \) and \(E_2 = 35 \text{ keV} \).

Lastly, the energy distributions \(\varphi_j \) for secondary electrons emitted by electrons and ions are given by:
\[
\varphi_e(E) = \frac{E}{2E_c^3} \left[1 + \frac{1}{2} \left(\frac{E}{E_c} \right)^2 \right]^{-3/2}, \tag{E12}
\]
\[
\varphi_{\text{ion}}(E) = \frac{1}{E_{\text{ion}}} \left[1 + \frac{1}{2} \left(\frac{E}{E_{\text{ion}}} \right)^2 \right]^{-2}, \tag{E13}
\]
where the most probable energies are \(E_c = 2 \text{ eV} \) and \(E_{\text{ion}} = 1 \text{ eV} \).

E.3. Transmission of Ions/Electrons

The transmission (also referred to as tunneling, Chow et al. 1993) current of ions/electrons, \(I_{\text{tran}} \), accounts for the plasma particles with sufficient velocity to penetrate completely through the grain without being captured:
\[
I_{\text{tran}} = -2\pi e \sum_j \left\{ Z_j \int_{v_B}^{\infty} dv_T \\
\times \int_0^\pi d\theta \ C_{\text{coll},j}(v_T) f_j(v_T, \theta) v_T^2 \sin \theta \right\}, \tag{E14}
\]
where the minimum velocity, \(v_B \), required to pass through the grain is (Draine & Salpeter 1979; McKee et al. 1987; Kimura & Mann 1998):
\[
v_B = \begin{cases}
\sqrt{(2k_BT + \frac{1}{2}m_jv_{\text{rel}}^2) \omega_j} & \text{if } Z_j\Phi_j \leq 0, \\
\sqrt{(2k_BT + \frac{1}{2}m_jv_{\text{rel}}^2) (\omega_j + Z_j\Phi_j)} & \text{if } Z_j\Phi_j > 0.
\end{cases} \tag{E15}
\]
From Draine & Salpeter (1979), the energy, \((k_BT + \frac{1}{2}m_jv_{\text{rel}}^2) \omega_j \), required to penetrate a grain is given by:
\[
\left(k_BT + \frac{1}{2}m_jv_{\text{rel}}^2 \right) \omega_j = \begin{cases}
\Delta_j & \text{if } Z_j \Phi_j < 0, \\
\Delta_j + E_{\text{Bohr}} & \text{if } Z_j \Phi_j > 0.
\end{cases} \tag{E16}
\]
Additionally, we assume that the ions emerge neutral because of recombination if their energy is below the Bohr Energy, \(E_{\text{Bohr}} = (m_j/m_e)E_H \) with \(E_H = 13.6 \text{ eV} \).

The penetration threshold energy, \(\Delta_j \), is found using an energy-range relation and the size of the dust grain (Fitting 1974):
\[
R_j(\Delta_j) = 4a_{\text{gr}}/3. \tag{E17}
\]
The energy-range relation is based on measured stopping ranges for various particles into materials, and we used outputs from the SRIM software (Ziegler & Biersack 1985; Ziegler et al. 2010) for ion and the CASINO software (Drouin et al. 2007) for electron stopping in materials and fit power-law profiles to the results in the form:
\[
R_j(E) = R_j E^{\beta_j}. \tag{E18}
\]
A compilation of the fit values are listed in Table 2.

E.4. Photoelectron Emission

The dust grains will be exposed to UV photons, and, depending on the grain material, electrons will be emitted from the surface of the grain. The photoelectric current, \(I_\gamma \), then is given by:
\[
I_\gamma = e \int_{W + E_{\text{min}}}^{\infty} d(h\nu) \ C_{\text{abs}}(h\nu) \mathcal{F}_{\gamma,\nu}(h\nu) Y_\gamma(h\nu) \\
\times \int_{E_{\text{min}}}^{E_{\text{max}}} dE \varphi_\gamma(E), \tag{E19}
\]
with \(E_{\text{max}} = h\nu - W \), \(h \) is Planck’s constant, \(\nu \) is the photon frequency, and \(W \) is the work function required to emit an electron. Following the example of Kimura & Mann (1998), we set \(E_{\text{work}} = W \). The photoelectric
TABLE 2

<table>
<thead>
<tr>
<th>Incident</th>
<th>Target</th>
<th>R [nm]</th>
<th>β</th>
<th>Target</th>
<th>R [nm]</th>
<th>β</th>
<th>Target</th>
<th>R [nm]</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>e^{-}</td>
<td>Fe</td>
<td>5.1457</td>
<td>1.5662</td>
<td>FeO</td>
<td>6.3182</td>
<td>1.5918</td>
<td>Fe$_2$O$_3$</td>
<td>7.1477</td>
<td>1.5935</td>
</tr>
<tr>
<td>H</td>
<td>Fe</td>
<td>7.8944</td>
<td>0.9667</td>
<td>FeO</td>
<td>9.6643</td>
<td>0.9550</td>
<td>Fe$_2$O$_3$</td>
<td>10.7754</td>
<td>0.9523</td>
</tr>
<tr>
<td>He</td>
<td>Fe</td>
<td>4.6270</td>
<td>0.9490</td>
<td>FeO</td>
<td>5.4699</td>
<td>0.9632</td>
<td>Fe$_2$O$_3$</td>
<td>6.0215</td>
<td>0.9802</td>
</tr>
<tr>
<td>C</td>
<td>Fe</td>
<td>2.2539</td>
<td>0.8049</td>
<td>FeO</td>
<td>2.5068</td>
<td>0.8319</td>
<td>Fe$_2$O$_3$</td>
<td>2.7192</td>
<td>0.8396</td>
</tr>
<tr>
<td>N</td>
<td>Fe</td>
<td>2.0788</td>
<td>0.7794</td>
<td>FeO</td>
<td>2.3009</td>
<td>0.8047</td>
<td>Fe$_2$O$_3$</td>
<td>2.4935</td>
<td>0.8115</td>
</tr>
<tr>
<td>O</td>
<td>Fe</td>
<td>1.9576</td>
<td>0.7627</td>
<td>FeO</td>
<td>2.1625</td>
<td>0.7851</td>
<td>Fe$_2$O$_3$</td>
<td>2.3461</td>
<td>0.7897</td>
</tr>
<tr>
<td>Ne</td>
<td>Fe</td>
<td>1.7949</td>
<td>0.7360</td>
<td>FeO</td>
<td>1.9881</td>
<td>0.7520</td>
<td>Fe$_2$O$_3$</td>
<td>2.1408</td>
<td>0.7577</td>
</tr>
<tr>
<td>Mg</td>
<td>Fe</td>
<td>1.6854</td>
<td>0.7061</td>
<td>FeO</td>
<td>1.8679</td>
<td>0.7221</td>
<td>Fe$_2$O$_3$</td>
<td>2.0332</td>
<td>0.7212</td>
</tr>
<tr>
<td>Si</td>
<td>Fe</td>
<td>1.5552</td>
<td>0.6753</td>
<td>FeO</td>
<td>1.7466</td>
<td>0.6831</td>
<td>Fe$_2$O$_3$</td>
<td>1.9039</td>
<td>0.6824</td>
</tr>
<tr>
<td>S</td>
<td>Fe</td>
<td>1.5055</td>
<td>0.6499</td>
<td>FeO</td>
<td>1.7055</td>
<td>0.6527</td>
<td>Fe$_2$O$_3$</td>
<td>1.8370</td>
<td>0.6594</td>
</tr>
<tr>
<td>Ca</td>
<td>Fe</td>
<td>1.4367</td>
<td>0.6139</td>
<td>FeO</td>
<td>1.6412</td>
<td>0.6151</td>
<td>Fe$_2$O$_3$</td>
<td>1.7841</td>
<td>0.6196</td>
</tr>
<tr>
<td>Fe</td>
<td>Fe</td>
<td>1.4116</td>
<td>0.5679</td>
<td>FeO</td>
<td>1.6464</td>
<td>0.5652</td>
<td>Fe$_2$O$_3$</td>
<td>1.8055</td>
<td>0.5646</td>
</tr>
<tr>
<td>Ni</td>
<td>Fe</td>
<td>1.4014</td>
<td>0.5609</td>
<td>FeO</td>
<td>1.6536</td>
<td>0.5536</td>
<td>Fe$_2$O$_3$</td>
<td>1.8228</td>
<td>0.5530</td>
</tr>
<tr>
<td>Zn</td>
<td>Fe</td>
<td>1.4128</td>
<td>0.5413</td>
<td>FeO</td>
<td>1.6734</td>
<td>0.5360</td>
<td>Fe$_2$O$_3$</td>
<td>1.8379</td>
<td>0.5367</td>
</tr>
<tr>
<td>Kr</td>
<td>Fe</td>
<td>1.4238</td>
<td>0.5076</td>
<td>FeO</td>
<td>1.6968</td>
<td>0.5048</td>
<td>Fe$_2$O$_3$</td>
<td>1.8721</td>
<td>0.5052</td>
</tr>
</tbody>
</table>

a - Electron stopping ranges are based on outputs from the CASINO software (Drouin et al. 2007).
b - Ion stopping ranges are based on outputs from the SRIM software (Ziegler & Biersack 1985; Ziegler et al. 2010).

yield, $Y_\gamma(h\nu)$, is the number of electrons emitted per absorbed photon (Draine & Salpeter 1979):

$$Y_\gamma(h\nu) = \frac{h\nu - E_{\text{work}} + E_{\text{low}}}{(h\nu)^2 - E_{\text{low}}^2} \times \left[1 - \left(1 - \frac{\lambda_{\text{esc}}}{a_{\text{gr}}} \right)^3 \right],$$

(E20)

where $E_{\text{work}} = 8$ eV and $E_{\text{low}} = 6$ eV. The energy distribution, $\varphi_\gamma(E)$, of photoelectrons (Grard 1973):

$$\varphi_\gamma(E) = \frac{E}{E_\gamma^2} \exp \left[-\frac{E}{E_\gamma} \right],$$

(E21)

where $E_\gamma = 1$ eV.

Because the SN remnant is expected in our study to be non-radiative, we assume that the spectral photon flux, $F_{\gamma,h\nu}(h\nu)$, is a blackbody at temperature, T, at the location of the grain inside the SN remnant (with a dilution factor, $\mathcal{D} = 10^{-22}$). Draine & Salpeter (1979):

$$F_{\gamma,h\nu}(h\nu) = \frac{2\pi \nu^2}{h^2} \left[\frac{1}{\exp\left(\frac{h\nu}{k_B T} \right) - 1} \right] \mathcal{D},$$

(E22)

or the average interstellar background (see e.g., Draine 2011) outside the SN remnant. Additionally, the absorption cross-section of the grain, $C_{\text{abs}}(h\nu)$, is dependent on the photon energy, grain size, and complex index of refraction. The complex indices of refraction for iron from Pollack et al. (1994) were used and $C_{\text{abs}}(h\nu)$ was calculated using Mie theory and the procedure from Bohren & Huffman (1983). However, this method is extremely calculation-intensive, and in order to simplify calculations, the $C_{\text{abs}}(h\nu)$ approximation given by Draine & Salpeter (1979) was used:

$$C_{\text{abs}}(h\nu) = \frac{\pi a_{\text{gr}}^3}{a_{\text{gr}} + 0.01 \mu m}.$$ (E23)

This approximation shows good agreement with calculation using Mie theory for iron within the region in which we are interested. Comparisons for various grain sizes are shown in Fig. 12.

![Comparison of Absorption Cross-Section](image)

FIG. 12.—Comparison of Absorption Cross-Section, C_{abs}, calculations. The C_{abs} calculated using Mie theory is shown with solid lines, and the approximation used by Draine & Salpeter (1979) is shown with dashed lines. For the energy range appropriate for the photoelectron emission ($\sim 8 - 13.6$ eV, shown with yellow, vertical lines), the approximation provides a reasonable approximation with far less calculations.

REFERENCES

Athanassiadou, T., & Fields, B. D. 2011, New Astron., 16, 229