Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

This Letter presents a search for new light resonances decaying to pairs of quarks and produced in association with a high-p_T photon or jet. The dataset consists of proton–proton collisions with an integrated luminosity of 36.1 fb$^{-1}$ at a centre-of-mass energy of $\sqrt{s} = 13$ TeV recorded by the ATLAS detector at the Large Hadron Collider. Resonance candidates are identified as massive large-radius jets with substructure consistent with a particle decaying into a quark pair. The mass spectrum of the candidates is examined for local excesses above background. No evidence of a new resonance is observed in the data, which are used to exclude the production of a lepto-phobic axial-vector Z' boson. These results improve upon the limits on light dijet resonances obtained at lower centre-of-mass energies.

© 2018 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
1 Introduction

Searches for resonance peaks in the invariant mass spectrum of hadrons are an essential part of the physics programme at the energy frontier. Many theoretical models predict resonances [1–3] with significant couplings to quarks and gluons, including resonances which also couple to dark-matter particles [4–7]. At the Large Hadron Collider (LHC), the ability to discover or exclude such hadronic resonances has been extended into the TeV range, although no evidence of statistically significant excesses has been seen [8, 9].

Sensitivity to light resonances is reduced by the immense background rates that would saturate the trigger and data acquisition systems. The recording of collision data typically requires placing thresholds of several hundred GeV on the transverse momentum (p_T^{min}) of at least one jet, which translates to approximate thresholds on mass of $m \approx 2p_T^{\text{min}}$. Consequently, recent searches for dijet resonances have poor sensitivity for masses well below 1 TeV. This limitation can be avoided by recording only a summary of the jet information needed for performing a resonance search in the dijet mass spectrum. This strategy is called “trigger-object-level analysis” in ATLAS [10] and “data scouting” in CMS [11], and has set limits for resonance masses in the range 500–800 GeV [11].

In this Letter, a search using an alternative approach [4, 12] is performed, in order to cover even lower resonance masses. The trigger threshold limitations are reduced by examining data where the light resonance is boosted in the transverse direction\(^1\) via recoil from high transverse momentum (p_T) initial-state radiation (ISR) of a photon or jet. Requiring a hard ISR object in the final state comes at the cost of reduced signal production rates, but allows highly efficient triggering at masses much lower than when triggering directly on the resonance decay products. The search is performed for resonance masses from 100 GeV to 220 GeV, a range in which the resonance is boosted and its decay products are collimated, such that the resonance mass can be calculated from the mass of a large-radius jet. In this regime, the use of jet substructure methods strongly suppresses the background, making it a crucial component for the search sensitivity. In addition, current datasets are the largest collected, allowing the sensitivity to rare processes to be extended beyond that of earlier studies.

Recently, CMS reported results of applying a similar technique [13] to exclude a light Z' boson with Standard Model (SM) coupling values (g_q) exceeding 0.1 to 0.25 in the mass range 50–300 GeV.

2 ATLAS detector

The ATLAS experiment [14] at the LHC is a multi-purpose particle detector with a forward-backward symmetric cylindrical geometry with layers of tracking, calorimeter, and muon detectors over nearly the entire solid angle around the proton–proton (pp) collision point. The inner detector (ID) consists of a high-granularity silicon pixel detector, including an insertable B-layer [15], and a silicon microstrip tracker, together providing precision tracking in the pseudorapidity range $|\eta| < 2.5$. Complementary, a transition radiation tracker provides tracking and electron identification information for $|\eta| < 2.0$. The ID

\(^1\) ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln\tan(\theta/2)$. It is equivalent to the rapidity for massless particles. Angular distance is measured in units of $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$.

2
is surrounded by a 2 T superconducting solenoid. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity, covering the region $|\eta| < 3.2$. A hadron (steel/scintillator-tile) calorimeter covers the central pseudorapidity range ($|\eta| < 1.7$). The end-cap and forward regions are instrumented with copper/LAr calorimeters ($1.7 < |\eta| < 3.2$) and LAr calorimeters with copper and tungsten absorbers, providing EM and hadronic energy measurements covering the region $|\eta| \leq 4.9$. The muon spectrometer consists of precision tracking chambers covering the region $|\eta| \leq 2.7$. The first-level trigger is implemented in hardware and uses a subset of the detector information to reduce the accepted rate to 100 kHz. This hardware trigger [16] is followed by a software-based trigger that reduces the rate of recorded events to 1 kHz.

3 Data and simulation samples

The data were collected in pp collisions at $\sqrt{s} = 13$ TeV during 2015 and 2016. Collision events are recorded with two triggers. The first selects events with at least one photon candidate that has an online transverse energy $E_T > 140$ GeV and passes the “loose” identification requirements based on the shower shapes in the EM and hadronic calorimeters [16]. The second trigger selects events with at least one jet candidate with online $E_T > 380$ GeV formed from clusters of energy deposits in the calorimeters [17] by the anti-k_t algorithm [18, 19] with radius parameter $R = 0.4$, implemented in the FastJet package [20]. Only data satisfying beam, detector and data-quality criteria are considered [21]. The data used correspond to an integrated luminosity of 36.1 fb$^{-1}$. The uncertainty in the integrated luminosity is 2.1%; it is derived following a methodology similar to that detailed in Ref. [22].

Samples of simulated events are used to characterise the hypothetical resonances as well as to study the kinematic distributions of background processes. These samples are not used to estimate the background contributions, except when validating the data-driven background estimate (described in Section 5).

Background samples were simulated using the Sherpa 2.1.1 event generator [23]. Processes containing a photon with associated jets were generated in several bins of photon p_T. The matrix elements were calculated at leading order (LO) with up to three partons for photon $p_T < 70$ GeV or four partons for higher photon p_T. Multijet background samples were generated at LO in several bins of leading-jet p_T. Samples of $W+$jets, $Z+$jets, $W+$γ and $Z+$γ events were simulated in bins of W/Z-boson p_T. Matrix elements were calculated at LO, and the cross sections were corrected at next-to-leading order (NLO) using K-factors derived from corresponding samples with leptonic vector-boson decays generated at NLO. All the above background samples were merged with the Sherpa parton shower [24] using the ME+PS@LO prescription [25]. The CT10 set of parton distribution functions (PDFs) [26] were used in conjunction with the dedicated parton shower tuning developed by the Sherpa authors.

As a benchmark signal, samples with a Z' resonance with only hadronic couplings were generated as in Refs. [27–29]. This Z' has axial-vector couplings to quarks. The coupling of the Z' to quarks, g_q, is set to be universal in quark flavour. A set of samples was generated with $m_{Z'}$ between 100 and 220 GeV and with $g_q = 0.5$, using the MadGraph_aMC@NLO generator [30] with the NNPDF2.3 LO PDF [31] and the A14 set of tuned parameters (tune) [32]. Parton showers were produced in Pythia 8.186 [33]. The total width $\Gamma_{Z'}$ for the $g_q = 0.5$ samples is negligible compared to the experimental resolution, which is about 10% of the boson mass. Interference of this benchmark model with the Standard Model Z boson is assumed to be negligible. For efficient population of the kinematic phase space, a photon (jet) with $p_T \geq 100$ GeV (350 GeV) was required in the generation phase.
The response of the detector to particles was modelled with a full ATLAS detector simulation [34] based on Geant4 [35]. All simulated events were overlaid with additional pp interactions (pile-up) simulated with the soft strong-interaction processes of Pythia 8.186 [33] using the A2 tune [36] and the MSTW2008LO PDF set [37]. The simulated events were reconstructed in the same way as the data, and were reweighted such that the distribution of the expected number of pp interactions per bunch crossing matches that seen in data.

4 Event reconstruction and event selection

Events are required to have a reconstructed primary vertex, defined as a vertex with at least two reconstructed tracks with $p_T > 400$ MeV each and with the largest sum of track p_T^2.

Photons are reconstructed from clusters of energy deposits in the electromagnetic calorimeter. The photon energy scale is corrected using events with $Z \rightarrow e^+e^-$ decays in data [38]. Identification requirements are applied to reduce the contamination from π^0 or other neutral hadrons decaying into photons. The photon identification is based on the profile of the energy deposits in the first and second layers of the electromagnetic calorimeter. Photons used in the event selection must satisfy the “tight” identification and isolation criteria defined in Ref. [39], and must have $|\eta| < 2.37$, excluding the EM calorimeter’s barrel/end-cap transition region of $1.37 < |\eta| < 1.52$. The efficiency of the photon selection is roughly 95% for photons with $E_T > 150$ GeV.

Two non-exclusive categories of jet candidates are built from clusters of energy deposits in the calorimeters [17] and are distinguished by the radius parameter used in the anti-k_t algorithm. Jets with a radius parameter $R = 1.0$ are referred to as large-R jets, denoted by J and required to have $|\eta| < 2.0$, whereas jets with a radius parameter $R = 0.4$ are referred to as narrow jets, denoted as j and are required to have $|\eta| < 2.4$. To mitigate the effects of pile-up and soft radiation, the large-R jets are trimmed [40]. Trimming takes the original constituents of the jet and reclusters them using the k_t algorithm [41] with a smaller radius parameter, R_{subjet}, to produce a collection of subjets. These subjets are discarded if they carry less than a specific fraction (f_{cut}) of the original jet p_T. The trimming parameters optimised for this search are $R_{\text{subjet}} = 0.2$ and $f_{\text{cut}} = 5\%$ [42].

The energies of selected narrow jets are corrected for contributions from pile-up interactions [43]. A correction used to calibrate jet energy measurements to the scale of the constituent particles of the jet [44] is then applied. Narrow jets with 25 GeV $< p_T < 60$ GeV are required to originate from the primary vertex as determined by a jet vertex tagger [43] that relies on tracks associated with the jets.

Quality requirements are applied to photon candidates to identify those arising from instrumental problems or non-collision background [45], and events containing such candidates are rejected. In addition, quality requirements are applied to remove events containing jets misreconstructed from detector noise or out-of-time energy deposits in the calorimeter from cosmic rays or other non-collision sources [46].

The production cross sections of the signal models considered in this search are many orders of magnitude lower than the background cross sections. In order to enhance the sensitivity to the signal, jet substructure techniques are used to identify the expected two-body quark-pair signal-like events within a single large-R jet. One of the commonly used jet substructure variables is τ_{21} [47], defined as the ratio τ_2/τ_1. The variable τ_N is a measure of how consistent a given jet’s constituents are with being fully aligned along N or more axes; thus τ_{21} is a useful discriminant for differentiating between a two-particle jet from the decay of a boosted resonance and a single-particle jet. However, τ_{21} is correlated with the reconstructed large-R
jet mass m_J. Any selection requirement on τ_{21} leads to a selection of jets from the leading background processes with efficiency strongly dependent on the jet mass, and modifies the final jet mass distribution in a way that makes it difficult to model using a simple functional approach, effectively increasing the systematic uncertainties and weakening the overall sensitivity. To avoid this, the designed decorrelated tagger (DDT) method [48, 49] is used to decorrelate τ_{21} from the reconstructed jet mass. The variable ρ_{DDT} is defined as

$$\rho_{DDT} = \log\left(\frac{m_J^2}{p_T \times \mu}\right),$$

where $\mu \equiv 1$ GeV is an arbitrary scale parameter. For $\rho_{DDT} \gtrsim 1$, there is a linear relationship between ρ_{DDT} and the mean value of τ_{21}. This allows the definition of τ_{21}^{DDT} [48, 49], a linearly corrected version of τ_{21}, which has mean values that are independent of the mass of the jet, as seen in Figure 1 for various ranges of large-R p_T.

Selected events are required to have at least one large-R jet, the resonance candidate, and at least one narrow jet or photon with azimuthal angular separation of at least $\Delta \phi = \pi/2$ from the resonance candidate. The ISR jet is the leading narrow jet with $p_T^J > 420$ GeV, while the ISR photon is the leading photon with $p_T^\gamma > 155$ GeV.

In the signal region (SR), the large-R jet must satisfy $p_T^J > 200$ GeV in the photon channel and $p_T^J > 450$ GeV in the jet channel, $p_T^J > 2 \times m_J$ to ensure sufficient collimation of the quark pairs from signal resonances so as to avoid edge effects of using a fixed-cone jet algorithm, $\tau_{21}^{DDT} < 0.50$ to suppress backgrounds and $\rho_{DDT} > 1.5$. The τ_{21}^{DDT} requirement was chosen by maximising the expected signal significance. The ρ_{DDT} constraint ensures that the τ_{21}^{DDT} variable is linear relative to ρ_{DDT}. If multiple jets satisfy these requirements, the jet with the lower τ_{21}^{DDT} from the two leading large-R jets is selected.
5 Background estimation and systematic uncertainties

The dominant backgrounds in the jet and photon channels are due to multi-jet production and inclusive γ production, respectively. The inclusive γ background is dominated by γ+jets and also includes multi-jet processes being misidentified with the same topology. In both channels, there is a sub-leading contribution from production of a jet or photon in association with a hadronically decaying electroweak gauge boson, V, where V represents a W or Z boson.

In the dominant backgrounds, the boosted phase space relevant to this search is not well described by Monte Carlo programs. Therefore, a data-driven technique is used to model the expected background in the signal region via a transfer-factor method which extrapolates from a control region (CR), defined by inverting the jet substructure requirement to $\tau_{21}^{DDT} > 0.50$.

The multi-jet and inclusive γ background estimates are constructed in bins of candidate resonance mass. In each bin, the estimate is calculated as $(N_{CR} - N_V)$ multiplied by the transfer factor, where N_{CR} is the number of events in the CR and N_V is the expected contribution from production with an associated vector boson estimated from simulated samples with cross sections computed at NLO precision in the strong coupling. The transfer factor (TF) is the expected ratio of events which pass the τ_{21}^{DDT} requirement to events which fail, measured using data with $m_J < (0.8 \times m_Z')$ or $m_J > (1.2 \times m_Z')$, to avoid potential contamination from a signal near m_Z'. The TF is parameterised in terms of two kinematic quantities, $\log(p_{T}^J/\mu)$ and ρ^{DDT}; it is implemented as a two-dimensional histogram, smoothed and interpolated into the signal region using a Gaussian process regression [50] using a squared exponential or “Gaussian kernel” with a characteristic length scale $\ell \propto 1/\sigma$ for a Gaussian width σ.

Residual contamination from signal events which leak into the control region is accounted for in the statistical analysis as follows: the background estimate and its uncertainty are validated by constructing an interpolation using data with $m_J < (0.7 \times m_Z')$ or $m_J > (1.3 \times m_Z')$, which is then compared to the data observed in a validation region (VR) in which $m_J \in [0.7, 0.8] m_Z'$ or $m_J \in [1.2, 1.3] m_Z'$. Where appropriate, the uncertainty in the data-driven background is increased to match the mean observed deviation of the background estimate from the data in the VR. This uncertainty inflation is added explicitly to account for the case where the background estimate is based on fewer events in the control region. This, however, does not change the nominal background estimate.

The ISR jet channel, the scale factor in the background uncertainty is found to be consistent with 1, while for the ISR γ channel the scale factor ranges from 1 to 2 across the values of m_Z'. The difference in the scale factors across channels comes from the number of data events: the ISR jet channel has 10 times more events than the ISR γ channel, which exposes subtle structures in the TF profile because the error bars are smaller. This leads to smaller optimal length scales in the GP fit, which in turn leads to larger uncertainties in the interpolation.

As a cross-check, the TF method is applied to a candidate mass range near the W and Z boson masses: the signal region’s mass range is set as a $\pm 20\%$ window around 85 GeV ([68,102] GeV), and the validation region as a $\pm 30\%$ window around the same mass, but with the SR removed ([59.5,68] GeV and [102,110.5] GeV). Figure 2 shows distributions of the large-R jet mass for data and the resulting background estimate. The latter is found to agree with the data within uncertainties. The SM prediction for W and Z production is scaled with the NLO cross section using NLO K-factors, as described in Section 3. The best-fit signal strength relative to the SM prediction for W and Z production, $\hat{\mu} = \sigma/\sigma_{W/Z}$, is $\hat{\mu} = 0.93 \pm 0.03$ (stat) ± 0.24 (syst) in the ISR jet channel and $\hat{\mu} = 1.07 \pm 0.13$ (stat) ± 0.35 (syst) in the ISR γ channel, consistent with the SM predictions. This result shows that the TF method works well.
Figure 2: Top: distribution of large-\(R\) jet mass near the \(W\) and \(Z\) boson masses, as a validation of background estimate using the transfer factor described in the text. The vertical dashed lines indicate the signal region (SR) surrounding the target \(W\) and \(Z\) boson masses. Bottom: residual between data and the estimated background. The distributions are shown for both the (left) jet and (right) photon channels. The contributions from the \(W\) and \(Z\) backgrounds have been scaled by their best-fit values, as described in the text. In the top panel, the statistical uncertainty is too small to be visible; in the bottom panel it is incorporated into the error bars on the data.

The largest systematic uncertainty is due to the estimate of the dominant background using the TF method. The Gaussian process regression provides a measure of the uncertainty in the interpolation through the posterior distribution in the kernel-induced transfer factor function space, conditioned on the measurement of the ratio of numbers of events in the signal and control regions \(\frac{N_{SR}}{N_{CR}}\) [50]. This uncertainty is tuned using the validation region defined above. The final uncertainty is approximately 1% of the total multi-jet or inclusive photon background estimate.

Additional systematic uncertainties stem from the use of simulated samples for the vector-boson associated backgrounds as well as the hypothetical signals. The largest sources of systematic uncertainty in each channel arise from uncertainties in the calibration and resolution of the large-\(R\) jet energy and mass, as well as the modelling of \(\tau_{21}^{\text{DDT}}\); individually these uncertainties range up to 10% relative to the signal, but together these uncertainties are less than 1% of the background estimate in the signal region. Additional, smaller systematic uncertainties are due to the uncertainty in the parton distribution functions and integrated luminosity.

6 Results

The observed distributions of the large-\(R\) jet mass are compared with the background estimates in Figure 3 and Figure 4 for two representative \(Z'\) mass values for the ISR jet and ISR \(\gamma\) channels, respectively. The
Figure 3: Top: distribution of large-R jet mass in the jet channel for $m_{Z'} = 160$ GeV (left) and 220 GeV (right). The vertical dashed lines indicate the signal region (SR) surrounding the target Z' mass. The signal is generated with $g_q = 0.5$. Bottom: ratio of data to the estimated background. The background estimate is different for each signal mass hypothesis; more details are given in the text.

A binned likelihood fit to the large-R jet mass distribution is performed in each mass-dependent signal region in both the ISR jet and γ channels, accounting for potential signal contamination in the control region used to define the TF. The largest excess is observed in the ISR jet signal region centred at 150 GeV. Performing a signal-plus-background fit with a Z' model assumption, the local significance in this region is found to be 2.5σ, corresponding to a global significance of 1.1σ, where the look-elsewhere effect [51] is calculated with respect to the entire mass window examined. The largest positive deviation from the expected background in the ISR γ channel is seen in the signal region centred at 140 GeV, with local (global) significance of 2.2σ (0.8σ).

Upper limits are derived at 95% confidence level on the Z' production cross section times acceptance as a function of the Z' mass between 100 and 220 GeV using profile-likelihood-ratio tests [52] with the CL$_{s}$ method [53], shown in Figure 5.

The acceptance accounts for all selection criteria except for the requirement on τ_{D2}^{DDT}; it can vary significantly for various theoretical models, yet can be well estimated without detailed detector simulation. For the Z' signal model considered in this paper, acceptance values vary from 0.10% to 0.06% in the ISR jet channel and from 4.0% to 1.0% in the ISR γ channel, in the mass range between 100 and 220 GeV. The
efficiency of the τ_{21}^{DDT} requirement is less model dependent but more dependent on accurate modelling of the τ_{21}^{DDT} variable in simulated samples. The acceptance times efficiency varies between 0.07%–0.04% (2.6%–0.5%) for the ISR jet (ISR γ) channel over the 100–220 GeV mass interval.

The observed and expected limits on the coupling g_q are shown in Figure 6, for the combination of the ISR jet and ISR γ channels. In the combination, the nuisance parameters corresponding to luminosity and large-R jet energy scale and resolution uncertainties are fully correlated between channels, while the background uncertainties are uncorrelated. The largest deviation is for the 140 GeV signal hypothesis, corresponding to 2.4σ local and 1.2σ global significances.

The effects of systematic uncertainties are studied for hypothesised signals using the signal-strength parameter μ. The relative uncertainties in the best-fit μ value from the leading sources of systematic uncertainty are shown in Table 1 for $m_{Z'} = 160$ and 220 GeV. The TF systematic uncertainty has the largest impact on the sensitivity, accounting for 90% (88%) of the total impact for the 160 (220) GeV signal hypothesis. The second biggest impact is due to uncertainties associated with large-R jets. The data’s statistical uncertainty accounts for about 10% of the total impact at both mass points considered.
Table 1: The source and relative size of each of the largest uncertainties in the best-fit signal-strength parameter μ of hypothesised signal production of Z' with $m_{Z'} = 160$ GeV and $m_{Z'} = 220$ GeV.

<table>
<thead>
<tr>
<th>Uncertainty source</th>
<th>$\Delta\mu/\mu$ [%] $m_{Z'} = 160$ GeV</th>
<th>$\Delta\mu/\mu$ [%] $m_{Z'} = 220$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer factor</td>
<td>90</td>
<td>88</td>
</tr>
<tr>
<td>Large-R jet</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>93</td>
<td>91</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Figure 5: Observed and expected limits at 95% confidence level on the Z' production cross section (σ) times kinematic acceptance (A, see text for details) in the ISR jet channel (left) and the ISR γ channel (right).
Figure 6: Observed and expected limits at 95% confidence level on the coupling (g_q), for the combination of the ISR jet and ISR γ channels.
7 Conclusion

In summary, a search for new light resonances decaying into pairs of quarks and produced in association with a high-p_T photon or jet is presented. The search is based on 36.1 fb$^{-1}$ of 13 TeV pp collisions recorded by the ATLAS detector at the LHC. Resonance candidates are identified as massive large-radius jets with substructure consistent with a quark pair. The mass spectrum of the candidates is examined for local excesses above a data-derived estimate of a smoothly falling background. No evidence of anomalous phenomena is observed in the data, and limits are presented on the cross section and couplings of a leptophobic axial-vector Z' benchmark model. Upper limits at 95% confidence level on production cross sections times acceptance are 0.50 pb (0.04 pb) for a 100 GeV signal hypothesis, and 0.35 pb (0.03 pb) for a 220 GeV signal hypothesis in the ISR jet (ISR γ) channels. The observed upper limits on the coupling g_q are 0.17 for $m_{Z'} = 100$ GeV and 0.21 for $m_{Z'} = 220$ GeV, when combining ISR jet and ISR γ channels.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; STFC, Belarus; CNPq and FAPERJ, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DLR and DFKI, Germany; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MINECO, Spain; RSF, Russia; RGC, Hong Kong SAR, China; SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [54].
References

2 Physics Department, SUNY Albany, Albany NY, United States of America
3 Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7 Department of Physics, University of Arizona, Tucson AZ, United States of America
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
9 Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Department of Physics, The University of Texas at Austin, Austin TX, United States of America
12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
14 Institute of Physics, University of Belgrade, Belgrade, Serbia
15 Department for Physics and Technology, University of Bergen, Bergen, Norway
16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
17 Department of Physics, Humboldt University, Berlin, Germany
18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
19 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
20 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (c) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; (d) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
21 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
22 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
23 Physikalisches Institut, University of Bonn, Bonn, Germany
24 Department of Physics, Boston University, Boston MA, United States of America
25 Department of Physics, Brandeis University, Waltham MA, United States of America
26 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
27 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
28 (a) Transilvania University of Brasov, Brasov; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c) Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; (d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (e) University Politehnica Bucharest, Bucharest; (f) West University in Timisoara, Timisoara, Romania
29 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
30 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
31 Department of Physics, Carleton University, Ottawa ON, Canada
32 CERN, Geneva, Switzerland
33 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
34 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de
Universidad Técnica Federico Santa María, Valparaíso, Chile

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; Department of Physics, Nanjing University, Jiangsu; Physics Department, Tsinghua University, Beijing 100084; University of Chinese Academy of Science (UCAS), Beijing, China

Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui; School of Physics, Shandong University, Shandong; School of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, China

Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui; School of Physics, Shandong University, Shandong; School of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, China

Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France

Nevis Laboratory, Columbia University, Irvington NY, United States of America

Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland

Physics Department, Southern Methodist University, Dallas TX, United States of America

Physics Department, University of Texas at Dallas, Richardson TX, United States of America

DESY, Hamburg and Zeuthen, Germany

Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany

Department of Physics, Duke University, Durham NC, United States of America

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

INFN e Laboratori Nazionali di Frascati, Frascati, Italy

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

INFN Sezione di Genova; Dipartimento di Fisica, Università di Genova, Genova, Italy

E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America

Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Department of Physics, The University of Hong Kong, Hong Kong; Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Department of Physics, National Tsing Hua University, Taiwan, Taiwan

Department of Physics, Indiana University, Bloomington IN, United States of America

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa City IA, United States of America
Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
(a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Louisiana Tech University, Ruston LA, United States of America
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teórica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, United States of America
Department of Physics, McGill University, Montreal QC, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
(a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Republic of Belarus
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
National Research Nuclear University MEPhI, Moscow, Russia
D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz CA, United States of America

Department of Physics, University of Washington, Seattle WA, United States of America

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shinshu University, Nagano, Japan

Department Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby BC, Canada

SLAC National Accelerator Laboratory, Stanford CA, United States of America

(a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

(a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

(a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Tomsk State University, Tomsk, Russia

Department of Physics, University of Toronto, Toronto ON, Canada

(a) INFN-TIFPA; (b) University of Trento, Trento, Italy

(a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada

Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan

Department of Physics and Astronomy, Tufts University, Medford MA, United States of America

Department of Physics and Astronomy, University of California, Irvine, Irvine CA, United States of America

(a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Department of Physics, University of Illinois, Urbana IL, United States of America

Instituto de Fisica Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Spain
<table>
<thead>
<tr>
<th>#</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>171</td>
<td>Department of Physics, University of British Columbia, Vancouver BC, Canada</td>
</tr>
<tr>
<td>172</td>
<td>Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada</td>
</tr>
<tr>
<td>173</td>
<td>Department of Physics, University of Warwick, Coventry, United Kingdom</td>
</tr>
<tr>
<td>174</td>
<td>Waseda University, Tokyo, Japan</td>
</tr>
<tr>
<td>175</td>
<td>Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel</td>
</tr>
<tr>
<td>176</td>
<td>Department of Physics, University of Wisconsin, Madison WI, United States of America</td>
</tr>
<tr>
<td>177</td>
<td>Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany</td>
</tr>
<tr>
<td>178</td>
<td>Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany</td>
</tr>
<tr>
<td>179</td>
<td>Department of Physics, Yale University, New Haven CT, United States of America</td>
</tr>
<tr>
<td>180</td>
<td>Yerevan Physics Institute, Yerevan, Armenia</td>
</tr>
<tr>
<td>181</td>
<td>Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France</td>
</tr>
<tr>
<td>182</td>
<td>Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan</td>
</tr>
<tr>
<td></td>
<td>Also at Department of Physics, King’s College London, London, United Kingdom</td>
</tr>
<tr>
<td></td>
<td>Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan</td>
</tr>
<tr>
<td></td>
<td>Also at Novosibirsk State University, Novosibirsk, Russia</td>
</tr>
<tr>
<td></td>
<td>Also at TRIUMF, Vancouver BC, Canada</td>
</tr>
<tr>
<td></td>
<td>Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, United States of America</td>
</tr>
<tr>
<td></td>
<td>Also at Physics Department, An-Najah National University, Nablus, Palestine</td>
</tr>
<tr>
<td></td>
<td>Also at Department of Physics, California State University, Fresno CA, United States of America</td>
</tr>
<tr>
<td></td>
<td>Also at Department of Physics, University of Fribourg, Fribourg, Switzerland</td>
</tr>
<tr>
<td></td>
<td>Also at II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany</td>
</tr>
<tr>
<td></td>
<td>Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain</td>
</tr>
<tr>
<td></td>
<td>Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal</td>
</tr>
<tr>
<td></td>
<td>Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia</td>
</tr>
<tr>
<td></td>
<td>Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China</td>
</tr>
<tr>
<td></td>
<td>Also at Universita di Napoli Parthenope, Napoli, Italy</td>
</tr>
<tr>
<td></td>
<td>Also at Institute of Particle Physics (IPP), Canada</td>
</tr>
<tr>
<td></td>
<td>Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania</td>
</tr>
<tr>
<td></td>
<td>Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia</td>
</tr>
<tr>
<td></td>
<td>Also at Borough of Manhattan Community College, City University of New York, New York City, United States of America</td>
</tr>
<tr>
<td></td>
<td>Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece</td>
</tr>
<tr>
<td></td>
<td>Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa</td>
</tr>
<tr>
<td></td>
<td>Also at Louisiana Tech University, Ruston LA, United States of America</td>
</tr>
<tr>
<td></td>
<td>Also at Instituto Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain</td>
</tr>
<tr>
<td></td>
<td>Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America</td>
</tr>
<tr>
<td></td>
<td>Also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France</td>
</tr>
<tr>
<td></td>
<td>Also at Graduate School of Science, Osaka University, Osaka, Japan</td>
</tr>
<tr>
<td></td>
<td>Also at Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany</td>
</tr>
<tr>
<td></td>
<td>Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University</td>
</tr>
<tr>
<td></td>
<td>Nijmegen/Nikhef, Nijmegen, Netherlands</td>
</tr>
<tr>
<td></td>
<td>Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America</td>
</tr>
</tbody>
</table>
America

ac Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
ad Also at CERN, Geneva, Switzerland
ae Also at Georgian Technical University (GTU), Tbilisi, Georgia
af Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
ag Also at Manhattan College, New York NY, United States of America
ah Also at The City College of New York, New York NY, United States of America
ai Also at Departamento de Física Teorica y del Cosmos, Universidad de Granada, Granada, Portugal
aj Also at Department of Physics, California State University, Sacramento CA, United States of America
ak Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
al Also at Departement de Physique Nucleaire et Corpusculaire, Université de Genève, Geneva, Switzerland
am Also at Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
an Also at School of Physics, Sun Yat-sen University, Guangzhou, China
ao Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria
ap Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
aq Also at National Research Nuclear University MEPhI, Moscow, Russia
ar Also at Department of Physics, Stanford University, Stanford CA, United States of America
as Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
at Also at Giresun University, Faculty of Engineering, Turkey
au Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
av Also at Department of Physics, Nanjing University, Jiangsu, China
aw Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
ax Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
* Deceased