Search for the Decay of the Higgs Boson to Charm Quarks with the ATLAS Experiment

The ATLAS Collaboration

A direct search for the Standard Model Higgs boson decaying to a pair of charm quarks is presented. Associated production of the Higgs and Z bosons, in the decay mode $ZH \rightarrow \ell^+\ell^-c\bar{c}$ is studied. A dataset with an integrated luminosity of 36.1 fb$^{-1}$ of pp collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the LHC is used. The $H \rightarrow c\bar{c}$ signature is identified using charm-tagging algorithms. The observed (expected) upper limit on $\sigma(pp \rightarrow ZH) \times B(H \rightarrow c\bar{c})$ is $2.7 (3.9^{+2.1}_{-1.1})$ pb at the 95% confidence level for a Higgs boson mass of 125 GeV, while the Standard Model value is 26 fb.
In July 2012, the ATLAS and CMS collaborations announced the discovery of a new particle with a mass of approximately 125 GeV [1, 2] in searches for the Standard Model (SM) Higgs boson at the Large Hadron Collider (LHC) [3]. Subsequent measurements indicate that this particle is consistent with the SM Higgs boson [4–10]. Direct evidence for the Yukawa coupling of the Higgs boson to the top [11] and bottom [12, 13] quarks was recently obtained. Measurements of the Yukawa coupling of the Higgs boson to quarks in generations other than the third are difficult at hadron colliders, due to small branching fractions, large backgrounds, and challenges in jet flavor identification [14, 15]. This Letter presents a direct search by the ATLAS experiment for the decay of the Higgs boson to a pair of charm (c) quarks. This search targets the production of the Higgs boson in association with a Z boson decaying to charged leptons: \(Z(\ell^+\ell^-)H(c\bar{c}) \), where \(\ell = e, \mu \).

The SM branching fraction for a Higgs boson with a mass of 125 GeV to decay to a pair of charm quarks is predicted to be 2.9% [16]. The inclusive cross-section for \(\sigma(pp \rightarrow ZH) \times B(H \rightarrow c\bar{c}) \) is 26 fb at \(\sqrt{s} = 13 \text{ TeV} \) [17]. Rare exclusive decays of the Higgs boson to a light vector meson or quarkonium state and a photon can also probe the couplings of the second-generation quarks to the Higgs boson [18–21]. Previously, the ATLAS Collaboration presented an indirect search for the decay of the Higgs boson to \(c\bar{c} \)-quarks via the decay to \(J/\psi \gamma \), obtaining a branching fraction limit of \(1.5 \times 10^{-3} \) at the 95% confidence level (CL), which approximately corresponds to a limit of 540 times the SM prediction [14, 20]. Bounds on Higgs boson branching fractions to unobserved final states and fits to global rates constrain \(B(H \rightarrow c\bar{c}) < 20\% \) at the 95% CL, assuming SM production cross-sections [22]. These limits can still accommodate large modifications to the Higgs boson coupling to charm quarks from new physics [22]. In this Letter, a new approach is introduced to investigate the coupling of the Higgs boson to charm quarks.

The search is performed using \(pp \) collision data recorded in 2015 and 2016 with the ATLAS detector [23] at \(\sqrt{s} = 13 \text{ TeV} \). The ATLAS detector at the LHC covers nearly the entire solid angle around the collision point. It consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting toroidal magnets. An additional pixel layer was installed for the \(\sqrt{s} = 13 \text{ TeV} \) running period [24]. After the application of beam, detector and data-quality requirements, the integrated luminosity corresponds to \(36.1 \pm 0.8 \text{ fb}^{-1} \), measured following Ref. [25]. Events are required to contain exactly two same-flavor leptons with an invariant mass consistent with that of the Z boson, and at least two jets of which one or two are identified as charm jets (c-jets). In this Letter, lepton refers to only electrons or muons. The analysis procedure is validated by measuring the yield of ZW and ZZ production, where the sample is enriched in \(W \rightarrow cs, cd \) and \(Z \rightarrow c\bar{c} \) decays. Further details can be found in Ref. [12].

Monte Carlo (MC) simulated samples were produced for signal and background processes using the full ATLAS detector simulation [26] using Geant4 [27]. Table 1 provides details of the event generators used for each signal and background sample. Signal events were produced at next-to-leading order (NLO) for the \(q\bar{q} \rightarrow ZH \) process and at leading order (LO) for the \(gg \rightarrow ZH \) process with Powheg BOX v2 [28]. The dominant \(Z+jets \) background and the resonant diboson ZW and ZZ processes were generated using Sherpa 2.2.1 [29]. The \(tt \) background was generated using Powheg BOX v2. Backgrounds from single top and multijet production and the contribution from Higgs decays other than \(bb \) and \(c\bar{c} \) are assessed to be

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upwards. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi \) being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle \(\theta \) as \(\eta = -\ln(\tan(\theta/2)) \). Angular distance is measured in units of \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \).
Table 1: The configurations used for event generation of the signal and background processes. If two parton distribution functions (PDFs) are shown, the first is for the matrix element calculation and the second for the parton shower; otherwise the same is used for both. Alternative event generators and configurations, used to estimate systematic uncertainties, are in parentheses. Tune refers to the underlying-event tuned parameters of the parton shower event generator. MG5_aMC refers to MadGraph5_aMC@NLO 2.2.2 [30]; Pythia 8 refers to version 8.212 [31]. Heavy-flavor hadron decays modeled by EvtGen 1.2.0 [32] are used for all samples except those generated using Sherpa. The order of the calculation of the cross-sections used to normalize the predictions is indicated. The \(q\bar{q} \rightarrow ZH \) cross-section is estimated by subtracting the \(gg \rightarrow ZH \) cross-section from the \(pp \rightarrow ZH \) cross-section. NNLO denotes next-to-next-to-leading order; NLL denotes next-to-leading-log and NNLL denotes next-to-next-to-leading log.

<table>
<thead>
<tr>
<th>Process</th>
<th>Event Generator (alternative)</th>
<th>Parton Shower (alternative)</th>
<th>PDF (alternative)</th>
<th>Tune</th>
<th>Cross-section</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q\bar{q} \rightarrow ZH)</td>
<td>Powheg-BOX v2 [28]</td>
<td>Pythia 8</td>
<td>PDF4LHC15NLO [33]</td>
<td>AZNLO [34]</td>
<td>NNLO (QCD)*</td>
</tr>
<tr>
<td></td>
<td>+GoSam [35]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MeNLO [45, 46]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Herwig 7 [47])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(gg \rightarrow ZH)</td>
<td>Powheg-BOX v2</td>
<td>Pythia 8</td>
<td>PDF4LHC15NLO [33]</td>
<td>AZNLO [34]</td>
<td>NLO+NLL (QCD) [17, 49–51]</td>
</tr>
<tr>
<td></td>
<td>(Herwig 7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(A14)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>Powheg-BOX v2</td>
<td>Pythia 8</td>
<td>NNPDF3.0NLO [52]</td>
<td>A14</td>
<td>NNLO+NLL [53]</td>
</tr>
<tr>
<td></td>
<td>(Herwig 7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ZW, ZZ)</td>
<td>Sherpa 2.2.1 [29]</td>
<td>Sherpa</td>
<td>NNPDF3.0NLO [52]</td>
<td>Sherpa</td>
<td>NLO</td>
</tr>
<tr>
<td></td>
<td>(Powheg-BOX)</td>
<td>(Pythia 8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Z+\text{jets})</td>
<td>Sherpa 2.2.1 [29]</td>
<td>Sherpa</td>
<td>NNPDF3.0NLO [52]</td>
<td>Sherpa</td>
<td>NNLO [54]</td>
</tr>
<tr>
<td></td>
<td>(MG5_aMC)</td>
<td>(Pythia 8)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Higgs boson mass is set to \(m_H = 125 \) GeV and the top-quark mass is set to 172.5 GeV.

Events are required to have at least one reconstructed primary vertex. Electron candidates are reconstructed from energy clusters in the electromagnetic calorimeter that are associated with charged-particle tracks reconstructed in the inner detector [55, 56]. Muon candidates are reconstructed by combining inner detector tracks with muon spectrometer tracks or energy deposits in the calorimeters consistent with the passage of minimum-ionizing particles [57]. For data recorded in 2015, the single-electron (muon) trigger required a candidate with \(p_T > 24 \) (20) GeV; in 2016 the lepton \(p_T \) threshold was raised to 26 GeV. Events are required to contain a pair of same-flavor leptons, both satisfying \(p_T > 7 \) GeV and \(|\eta| < 2.5 \). At least one lepton must have \(p_T > 27 \) GeV and correspond to a lepton that passed the trigger. The two leptons are required to satisfy loose track-isolation criteria with an efficiency greater than 99%. They are required to have opposite charge in dimuon events, but not in dielectron events due to the non-negligible charge misidentification rate of electrons. The invariant mass of the dilepton system is required to be consistent with the mass of the \(Z \) boson: \(81 \) GeV < \(m_{\ell\ell} \) < 101 GeV.

Jets are reconstructed from topological energy clusters in the calorimeters [58, 59] using the anti-\(k_t \) algorithm [60] with a radius parameter of 0.4 implemented in the FastJet package [61]. The jet energy is corrected using a jet-area-based technique [62, 63] and calibrated [64, 65] using \(p_T \) - and \(\eta \)-dependent correction factors determined from simulation, with residual corrections from internal jet properties. Further corrections from in situ measurements are applied to data. Selected jets must have \(p_T > 20 \) GeV and \(|\eta| < 2.5 \). Events are required to contain at least two jets. If a muon is found within a jet, its momentum is added to the selected jet. An overlap removal procedure resolves cases in which the same physical object is reconstructed multiple times, e.g. an electron also reconstructed as a jet.
Jets in simulated events are labeled according to the presence of a heavy-flavor hadron with $p_T > 5$ GeV within $\Delta R = 0.3$ from the jet axis. If a b-hadron is found the jet is labeled as a b-jet. If no b-hadron is found, but a c-hadron is present, then the jet is labeled as a c-jet. Otherwise the jet is labeled as a light-flavor jet (l-jet).

Flavor-tagging algorithms exploit the different lifetimes of b-, c- and light-flavor hadrons. A c-tagging algorithm is used to identify c-jets. Charm jets are particularly challenging to tag because c-hadrons have shorter lifetimes and decay to fewer charged particles than b-hadrons. Boosted decision trees (BDTs) are trained to obtain two multivariate discriminants: to separate c-jets from l-jets and c-jets from b-jets. The same variables used for b-tagging [66, 67] are used. Figure 1 shows the selection criteria applied in the two-dimensional multivariate discriminant space, to obtain an efficiency of 41% for c-jets and rejection factors of 4.0 and 20 for b-jets and l-jets. The efficiencies are calibrated to data using b-quarks from $t \to Wb$ and c-quarks from $W \to cs, cd$ with methods identical to the b-tagging algorithms [66]. Statistical uncertainties in the simulation are reduced, by weighting events according to the tagging efficiencies of their jets, parameterized as a function of jet flavor, p_T, η and the angular separation between jets, rather than imposing a direct requirement on the c-tagging discriminants.

Data are analyzed in four categories with different expected signal purities. The dijet invariant mass, $m_{c\bar{c}}$, constructed using the two highest-p_T jets, is the discriminating variable in each category. Categories are defined using the transverse momentum of the reconstructed Z boson, p_T^Z (75 GeV $\leq p_T^Z < 150$ GeV and $p_T^Z \geq 150$ GeV) and the number of c-tags amongst the leading jets (either one or two). The p_T^Z requirements exploit the harder p_T^Z distribution in ZH compared to $Z +$ jets production. Background events are rejected by requiring the angular separation between the two jets constituting the dijet system, $\Delta R_{c\bar{c}}$, to be less than 2.2, 1.5 or 1.3 for events satisfying 75 $\leq p_T^Z < 150$ GeV, 150 $\leq p_T^Z < 200$ GeV or $p_T^Z \geq 200$ GeV. The signal acceptance ranges from 0.5% to 3.4% depending on the category. A joint binned maximum-profile-likelihood fit to $m_{c\bar{c}}$ in the categories is used to extract the signal yield and the Z+jets background normalization. The fit uses 15 bins in each category within the range of 50 GeV $< m_{c\bar{c}} < 200$ GeV, with

Figure 1: The c-jet tagging efficiency (colored scale) as a function of the b-jet and l-jet rejection as obtained from simulated $t\bar{t}$ events. The cross, labeled as working point, WP, denotes the selection criterion used in this analysis. The solid and dotted black lines indicate the contours in rejection space for the fixed c-tagging efficiency used in the analysis and two alternatives.
a bin width of 10 GeV. The parameter of interest, μ, common to all categories, is the signal strength, defined as the ratio of the measured signal yield to the SM prediction.

Systematic uncertainties affecting the signal and background predictions include theoretical uncertainties in the signal and background modeling and experimental uncertainties. Table 2 shows their relative impact on the fitted value of μ. Uncertainties in the $mc\bar{c}$ shape of the backgrounds are assessed by comparisons between nominal and alternative event generators as indicated in Table 1.

Systematic uncertainties are incorporated within the statistical model through nuisance parameters that modify the shape and/or normalization of the distributions. Statistical uncertainties in the simulation samples are accounted for. The $Z+$jets background is normalized from the data through the inclusion of an unconstrained normalization parameter for each category. The fitted normalization parameters range between 1.13 and 1.30. All other background normalization factors are correlated between categories, with acceptance uncertainties of order 10% to account for relative variations between categories.

The dominant contributions to the uncertainty in μ are the efficiency of the tagging algorithms, the jet energy scale and resolution, and the background modeling. The largest uncertainty is due to the normalization of the dominant $Z+$jets background. The typical uncertainty in the tagging efficiency is 25% for c-jets, 5% for b-jets, and 20% for l-jets.

Table 2: Breakdown of the relative contributions to the total uncertainty in μ. The statistical uncertainty includes the contribution from the floating $Z+$jets normalization parameters. The sum in quadrature of the individual components differs from the total uncertainty due to correlations between the components.

<table>
<thead>
<tr>
<th>Source</th>
<th>$\sigma/\sigma_{\text{tot}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>49%</td>
</tr>
<tr>
<td>Floating $Z+$jets normalization</td>
<td>31%</td>
</tr>
<tr>
<td>Systematic</td>
<td>87%</td>
</tr>
<tr>
<td>Flavor tagging</td>
<td>73%</td>
</tr>
<tr>
<td>Background modeling</td>
<td>47%</td>
</tr>
<tr>
<td>Lepton, jet and luminosity</td>
<td>28%</td>
</tr>
<tr>
<td>Signal modeling</td>
<td>28%</td>
</tr>
<tr>
<td>MC statistical</td>
<td>6%</td>
</tr>
</tbody>
</table>

Table 3 shows the fitted signal and background yields. The $mc\bar{c}$ distributions in the 2 c-tag categories are shown in Figure 2 with the background shapes and normalizations according to the result of the fit. Good agreement is observed between the post-fit shapes of the distributions and the data.

The analysis procedure is validated by measuring the yield of ZV production, where V denotes a W or Z boson, with the same event selection. The fraction of the ZZ yield from $Z \rightarrow c\bar{c}$ decays is $\sim 55\%$ (20%) in the 2 c-tag (1 c-tag) category, while the fraction of the ZW yield from $W \rightarrow cs, cd$ is $\sim 65\%$ for both the 2 and 1 c-tag categories. Contributions of Higgs boson decays to $c\bar{c}$ and $b\bar{b}$ are treated as background and constrained to the SM predictions within its theoretical uncertainties. The diboson signal strength is measured to be $\mu_{ZV} = 0.6^{+0.5}_{-0.4}$ with an observed (expected) significance of 1.4 (2.2) standard deviations.

The best-fit value for the $ZH(c\bar{c})$ signal strength is $\mu_{ZH} = -69 \pm 101$. By assuming a signal with the kinematics of the SM Higgs boson, model-dependent corrections are made to extrapolate to the inclusive...
Table 3: Post-fit yields for the signal and background processes in each category from the profile likelihood fit. Uncertainties include statistical and systematic contributions. The pre-fit SM expected $ZH(c\bar{c})$ signal yields are indicated in parenthesis.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Yield, 50 GeV < m_{c\bar{c}} < 200 GeV</th>
<th>1 c-tag</th>
<th>2 c-tags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75 ≤ p_{T}^{Z} < 150 GeV</td>
<td>p_{T}^{Z} ≥ 150 GeV</td>
<td>75 ≤ p_{T}^{Z} < 150 GeV</td>
</tr>
<tr>
<td>Z + jets</td>
<td>69400 ± 500</td>
<td>15650 ± 180</td>
<td>5320 ± 100</td>
</tr>
<tr>
<td>ZW</td>
<td>750 ± 130</td>
<td>290 ± 50</td>
<td>53 ± 13</td>
</tr>
<tr>
<td>ZZ</td>
<td>490 ± 70</td>
<td>180 ± 28</td>
<td>55 ± 18</td>
</tr>
<tr>
<td>t\bar{t}</td>
<td>2020 ± 280</td>
<td>130 ± 50</td>
<td>240 ± 40</td>
</tr>
<tr>
<td>ZH(b\bar{b})</td>
<td>32 ± 2</td>
<td>19.5 ± 1.5</td>
<td>4.1 ± 0.4</td>
</tr>
<tr>
<td>ZH(c\bar{c}) (SM)</td>
<td>-143 ± 170 (2.4)</td>
<td>-84 ± 100 (1.4)</td>
<td>-30 ± 40 (0.7)</td>
</tr>
<tr>
<td>Total</td>
<td>72500 ± 320</td>
<td>16180 ± 140</td>
<td>5650 ± 80</td>
</tr>
<tr>
<td>Data</td>
<td>72504</td>
<td>16181</td>
<td>5648</td>
</tr>
</tbody>
</table>

phase space. Hence, an upper limit on $\sigma(pp \rightarrow ZH) \times B(H \rightarrow c\bar{c})$ is computed using a modified frequentist CL$_S$ method \cite{68, 69} with the profile likelihood ratio as the test statistic. The observed (expected) upper limit is found to be 2.7 (3.9$^{+2.1}_{-1.1}$) pb at the 95% CL. This corresponds to an observed (expected) upper limit on μ at the 95% CL of 110 (150$^{+80}_{-40}$). The uncertainties in the expected limits correspond to the ±1σ interval of background-only pseudo-experiments. With the current sensitivity, the result depends weakly on the assumption of the SM rate for $H \rightarrow b\bar{b}$. The observed limit remains within 5% of the nominal value when the assumed value for normalization of the $ZH(b\bar{b})$ background is varied from zero to twice the SM prediction.
Figure 2: Observed and predicted $m_{c\bar{c}}$ distributions in the 2 c-tag analysis categories. The expected signal is scaled by a factor of 100. Backgrounds are corrected to the results of the fit to the data. The predicted background from the simulation is shown as red dashed histograms. The ratios of the data to the fitted background are shown in the lower panels. The error bands indicate the sum in quadrature of the statistical and systematic uncertainties in the background prediction.

A search for the decay of the Higgs boson to charm quarks has been performed using 36.1 fb$^{-1}$ of data collected with the ATLAS detector in pp collisions at $\sqrt{s} = 13$ TeV at the LHC. No significant excess of $ZH(c\bar{c})$ production is observed over the SM background expectation. The observed upper limit on $\sigma(pp \to ZH) \times B(H \to c\bar{c})$ is 2.7 pb at the 95% CL. The corresponding expected upper limit is $3.9_{-1.1}^{+2.9}$ pb. This is the most stringent limit to date in direct searches for the inclusive decay of the Higgs boson to charm quarks.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany;
Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [70].

References

Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7 Department of Physics, University of Arizona, Tucson AZ, United States of America
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
9 Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Department of Physics, The University of Texas at Austin, Austin TX, United States of America
12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
14 Institute of Physics, University of Belgrade, Belgrade, Serbia
15 Department for Physics and Technology, University of Bergen, Bergen, Norway
16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
17 Department of Physics, Humboldt University, Berlin, Germany
18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
19 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
20 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; (e) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
21 Centro de Investigaciones, Universidad Antonio Nario, Bogota, Colombia
22 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
23 Physikalisches Institut, University of Bonn, Bonn, Germany
24 Department of Physics, Boston University, Boston MA, United States of America
25 Department of Physics, Brandeis University, Waltham MA, United States of America
26 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
27 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
28 (a) Transilvania University of Brasov, Brasov; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c) Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; (d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (e) University Politehnica Bucharest, Bucharest; (f) West University in Timisoara, Timisoara, Romania
29 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
30 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
31 Department of Physics, Carleton University, Ottawa ON, Canada
32 CERN, Geneva, Switzerland
33 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
34 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
35 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Physics, Nanjing University, Jiangsu; (c) Physics Department, Tsinghua University, Beijing 100084; (d)
University of Chinese Academy of Science (UCAS), Beijing, China

36 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui; (b) School of Physics, Shandong University, Shandong; (c) School of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University; (d) Tsung-Dao Lee Institute, Shanghai, China

37 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France

38 Nevis Laboratory, Columbia University, Irvington NY, United States of America

39 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

40 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy

41 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

42 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland

43 Physics Department, Southern Methodist University, Dallas TX, United States of America

44 Physics Department, University of Texas at Dallas, Richardson TX, United States of America

45 DESY, Hamburg and Zeuthen, Germany

46 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

47 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany

48 Department of Physics, Duke University, Durham NC, United States of America

49 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

50 INFN e Laboratori Nazionali di Frascati, Frascati, Italy

51 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany

52 Département de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland

53 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy

54 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi, Georgia

55 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

56 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

57 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France

58 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

59 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America

60 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

61 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

62 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

63 Department of Physics, National Tsing Hua University, Hsinchu, Taiwan

64 Department of Physics, Indiana University, Bloomington IN, United States of America

65 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

66 University of Iowa, Iowa City IA, United States of America

67 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America

68 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
(a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Louisiana Tech University, Ruston LA, United States of America
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, United States of America
Department of Physics, McGill University, Montreal QC, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
(a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Republic of Belarus
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
National Research Nuclear University MEPhI, Moscow, Russia
D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
(a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

Department of Physics, Northern Illinois University, DeKalb IL, United States of America

Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

Department of Physics, New York University, New York NY, United States of America

Ohio State University, Columbus OH, United States of America

Faculty of Science, Okayama University, Okayama, Japan

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America

Department of Physics, Oklahoma State University, Stillwater OK, United States of America

Palacký University, RCPTM, Olomouc, Czech Republic

Center for High Energy Physics, University of Oregon, Eugene OR, United States of America

LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France

Graduate School of Science, Osaka University, Osaka, Japan

Department of Physics, University of Oslo, Oslo, Norway

Department of Physics, Oxford University, Oxford, United Kingdom

(a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy

Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America

National Research Centre "Kurchatov Institute" B.P.Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia

(a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America

(a) Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa; (b) Faculdade de Ciências, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Física, Universidade do Minho, Braga; (f) Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada; (g) Dep Física and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic

Czech Technical University in Prague, Praha, Czech Republic

Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia

Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

(a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy

(a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

(a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy

(a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Énergie des Sciences Techniques Nucleaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay
(Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
Department of Physics, University of Washington, Seattle WA, United States of America
Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Department of Physics, Shinshu University, Nagano, Japan
Department Physik, Universität Siegen, Siegen, Germany
Department of Physics, Simon Fraser University, Burnaby BC, Canada
SLAC National Accelerator Laboratory, Stanford CA, United States of America
(a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
Physics Department, Royal Institute of Technology, Stockholm, Sweden
Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
School of Physics, University of Sydney, Sydney, Australia
Institute of Physics, Academia Sinica, Taipei, Taiwan
Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Tomsk State University, Tomsk, Russia
Department of Physics, University of Toronto, Toronto ON, Canada
(a) INFN-TIFPA; (b) University of Trento, Trento, Italy
(a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
(a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Department of Physics, University of Illinois, Urbana IL, United States of America
Instituto de Fisica Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Spain
Department of Physics, University of British Columbia, Vancouver BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
Department of Physics, University of Warwick, Coventry, United Kingdom
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison WI, United States of America
Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Department of Physics, Yale University, New Haven CT, United States of America
Yerevan Physics Institute, Yerevan, Armenia
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at Department of Physics, King’s College London, London, United Kingdom
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Also at Novosibirsk State University, Novosibirsk, Russia
Also at TRIUMF, Vancouver BC, Canada
Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, United States of America
Also at Physics Department, An-Najah National University, Nablus, Palestine
Also at Department of Physics, California State University, Fresno CA, United States of America
Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
Also at II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
Also at Departament de Física de la Universitat Autonoma de Barcelona, Barcelona, Spain
Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China
Also at Università di Napoli Parthenope, Napoli, Italy
Also at Institute of Particle Physics (IPP), Canada
Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
Also at Borough of Manhattan Community College, City University of New York, New York City, United States of America
Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece
Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa
Also at Louisiana Tech University, Ruston LA, United States of America
Also at Instituto Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
Also at Graduate School of Science, Osaka University, Osaka, Japan
Also at Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
Also at CERN, Geneva, Switzerland
Also at Georgian Technical University (GTU), Tbilisi, Georgia
Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
Also at Manhattan College, New York NY, United States of America
Also at Hellenic Open University, Patras, Greece
Also at The City College of New York, New York NY, United States of America
Also at Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Granada, Portugal
Also at Department of Physics, California State University, Sacramento CA, United States of America
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
Also at Departamento de Physique Nucleaire et Corpusculaire, Université de Genève, Geneva, Switzerland
Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America
Also at Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
Also at School of Physics, Sun Yat-sen University, Guangzhou, China
Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria
Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
Also at National Research Nuclear University MEPhI, Moscow, Russia
Also at Department of Physics, Stanford University, Stanford CA, United States of America
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
Also at Giresun University, Faculty of Engineering, Turkey
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
Also at Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
* Deceased