A novel standalone track reconstruction algorithm for the LHCb upgrade
Renato Quagliani
on behalf of the LHCb collaboration

Scintillating fibre tracker at the LHCb upgrade

LHCb is a single arm forward spectrometer to study b and c hadrons.

LHCb detector will be upgraded during LS2 (2018-2020)
- Further precision improvements on J/ψ observables [1].
- Full software event reconstruction and read-out at collision rate (30 MHz) [2].
- Real-time calibration and alignment as in Run II.

Too high occupancy in current downstream tracker.
- Replaced by twelve scintillating fibre planes (SciFi) [3].
- 2.5 m Scintillating fibres as active material (d250 µm).
- Readout by Silicon Photomultipliers (SiPM) arrays (250 µm channel pitch)
- High detection efficiency (>99%), low material budget <1% X0/layer.
- Uniform resolution r0 ~ 100 µm.

SciFi tracking @ LHCb

![SciFi tracking diagram](image)

Designed as a tracking in projection track reconstruction algorithm.
- Able to cope with hit inefficiencies and low momenta (<5 GeV/c) tracks at a low ghost rate.
- Hit flagging leads to cleaner environment for low momentum tracks search.
- Improved track fit model accounts for local (SciFi region) magnetic field.
- Track reconstruction introduced, new parameterisation of search windows, fast stereo hit strategy.

SciFi stand-alone track reconstruction algorithm

Add stereo hits to xz projections

Given a xz candidate x-positions are predicted in u/v layers.
- Δx = 2.5 m hits stored and sorted by t, 1-0 clusters search: stored by smallest-
spread criteria (3x3 matrix).
- In situ y-segmentation: candidates having less than eleven hits are
found.

Bending plane: xz track projection search algorithm

Hit candidates are sorted by quality (p2, max) are compared to each other and clones are removed.

Performance

- | | TDR feeding (x clone rate) | Hybrid feeding (x clone rate) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>In flight B</td>
<td>0.44 ± 0.10</td>
<td>0.54 ± 0.10</td>
</tr>
<tr>
<td>In flight B</td>
<td>0.36 ± 0.10</td>
<td>0.46 ± 0.10</td>
</tr>
<tr>
<td>Downstream p > 5 GeV/c</td>
<td>0.52 ± 0.10</td>
<td>0.62 ± 0.10</td>
</tr>
<tr>
<td>Downstream p > 5 GeV/c</td>
<td>0.67 ± 0.10</td>
<td>0.77 ± 0.10</td>
</tr>
<tr>
<td>Fake track rate</td>
<td>21.2 ± 0.1</td>
<td>7.9 ± 0.1</td>
</tr>
</tbody>
</table>

Avg. Timing [ns/evt]: 79.44 22.86

Conclusions

Large boost of performance in all track categories w.r.t. TDR [4].
- Improved tracking efficiencies: +5% (p > 5GeV/c), +25% (p < 5GeV/c).
- 3 times less fake tracks rate and 4 times faster.
- Further improvements and dedicated tunings expected before Upgrade (Run III).

References

Renato Quagliani acknowledges funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme under grant agreement no 647777 (RECOPT)

Connecting the Dots 2018
Seattle, University of Washington, USA