New Physics in the Rayleigh-Jeans Tail of the CMB

Maxim Pospelov,1,2,3 Josef Pradler,4 Joshua T. Ruderman,5,3 and Alfredo Urbano6,3

1Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, Ontario N2L 2Y5, Canada
2Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
3Theoretical Physics Department, CERN, Geneva, Switzerland
4Institute of High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, 1050 Vienna, Austria
5Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003, USA
6INFN, sezione di Trieste, SISSA, via Bonomea 265, 34136 Trieste, Italy

(Dated: March 20, 2018)

We show that despite stringent constraints on the shape of the main part of the CMB spectrum, there is considerable room for its modification within its Rayleigh-Jeans (RJ) end, $\omega \ll T_{\text{CMB}}$. We construct explicit New Physics models that give an order one (or larger) increase of power in the RJ tail, which can be tested by existing and upcoming experiments aiming to detect the cosmological 21 cm emission/absorption signal. This class of models stipulates the decay of unstable particles to dark photons, A', that have a small mass, $m_{A'} \sim 10^{-14} - 10^{-9}$ eV, non-vanishing mixing angle ϵ with electromagnetism, and energies much smaller than T_{CMB}. The non-thermal number density of dark photons can be many orders of magnitude above the number density of CMB photons, and even a small probability of $A' \rightarrow A$ oscillations, going down to values of the mixing as small as $\epsilon \sim 10^{-5}$, can significantly increase the number of RJ photons. In particular, we show that resonant oscillations of dark photons into regular photons in the interval of redshifts $20 < z < 1700$ can be invoked as an explanation of the recent tentative observation of a stronger-than-expected absorption signal of 21 cm photons. We present a realistic model that realizes this possibility, where micro-eV mass dark matter decays to dark photons, with a lifetime longer than the age of the Universe.

Introduction: Modern cosmology owes much of its advance to precision observations of the Cosmic Microwave Background (CMB). By now, both the spectrum of the CMB and its angular anisotropies are precisely measured by a number of landmark experiments [1–3]. CMB physics continues its advance [4] into probing both the standard ΛCDM model to higher precision and possible New Physics that can manifest itself in small deviations from theoretical expectations. In addition, a qualitatively new cosmological probe, the physics of 21 cm emission/absorption at the end of the “dark ages,” may come into play in the very near future [4].

Cosmology has been a vital tool for learning about physics beyond the Standard Model (SM). In particular, we know that about a quarter of our Universe’s energy budget is comprised of cold Dark Matter (DM), which probably cannot be identified with any known particles or fields. The precision tools of cosmology, on the other hand, provide serious constraints on the properties of DM, which instead of coming “alone,” may be a part of an extended dark sector, comprising new matter and radiation fields, and potentially new forces. Recent years have seen a significant increase in studies of dark sectors, both in connection with terrestrial experiments, and in cosmological settings [3–5]. Both the spectral shape and angular anisotropies of the CMB radiation significantly restrict the amount of additional energy that dark sectors can deposit into the SM bath, as a function of injection time.

If such light fields are thermally excited, they can be detected through their gravitational interaction alone, as they would modify the Hubble expansion rate, affect the outcome of Big Bang Nucleosynthesis (BBN), and modify the statistics of the CMB angular anisotropy patterns. The resulting constraint, purely for historical reasons, is phrased in terms of the number of effective neutrino degrees of freedom which, according to the latest observational bounds, $N_{\text{eff}} = 3.04 \pm 0.33$ [2], is consistent with...
the expectations of the standard cosmology. Non-thermal Dark Radiation (DR) is considered in the literature less often, although many processes occurring solely in the dark sector may lead to its appearance.

In recent papers \cite{9 10}, interacting DR was examined in the regime where the individual quanta are much fewer in number but much harder in frequency than the typical CMB photons, \(\omega_{\text{DR}} \gg \omega_{\text{CMB}} \); \(n_{\text{DR}} \ll n_{\text{CMB}} \), but such that the \(N_{\text{eff}} \) constraint is satisfied. This type of DR may arise as a consequence of the late decays or annihilations of massive DM particles. In this paper we study the alternative, a much softer than CMB, but more numerous DR quanta,

\[\omega_{\text{DR}} \ll \omega_{\text{CMB}} \; , \; n_{\text{DR}} > n_{\text{RJ}} \; , \; \omega_{\text{DR}} n_{\text{DR}} \ll \rho_{\text{tot}} \, . \]

In this formula, \(\rho_{\text{tot}} \) stands for the total energy density of radiation and DM, \(n_{\text{DR}} \) is the number density of DR quanta, while \(n_{\text{RJ}} \) represents the low-energy Rayleigh-Jeans (RJ) tail of the standard CMB Planck distribution,

\[n_{\text{RJ}} = \frac{1}{\pi^2} \int_0^{\omega_{\text{max}}} \omega^2 d\omega \, \exp\left[\frac{\omega}{T_{\text{CMB}}} - 1\right] \approx \frac{T_{\text{CMB}}}{2\pi^2} \frac{\omega_{\text{max}}^3}{\pi^2} \]

\[\approx 0.21 x^2_{\text{max}} n_{\text{CMB}} \; , \; h = c = k = 1 \; \text{units} \, . \]

where we find it convenient to define the normalized photon frequency, \(x \equiv \omega / T_{\text{CMB}} \), which is redshift-independent. In this formula, \(n_{\text{CMB}} = 2\zeta(3)/\pi^2 T_{\text{CMB}}^2 \gg 0.24 T_{\text{CMB}}^2 \) is the full Planckian number density, while \(x_{\text{max}} = \omega_{\text{max}} / T_{\text{CMB}} \) is a (somewhat arbitrary) maximum frequency of the low-energy RJ interval, \(x_{\text{max}} \ll 1 \). If for example we take \(x_{\text{max}} = 2 \times 10^{-3} \), then we find \(n_{\text{RJ}} / n_{\text{CMB}} \approx 10^{-6} \). It is easy to see that the number density of DR quanta may indeed significantly exceed \(n_{\text{RJ}} \). Saturating the constraint on \(N_{\text{eff}} \) for the DR that matches the CMB frequencies with \(x_{\text{max}} \sim 2 \times 10^{-3} \), or alternatively letting \(x_{\text{max}} \sim 5\% \) of DM energy density \(\rho_{\text{DM}} \) be converted to DR in the same frequency range after the CMB decoupling, we arrive at the maximum number densities given by

\[n_{\text{DR}} \leq 1.5 \times 10^2 n_{\text{CMB}} , \; \text{early DR with } \Delta N_{\text{eff}} = 0.5 ; \]

\[n_{\text{DR}} \leq 3.3 \times 10^5 n_{\text{CMB}}, \; \text{late decay of } 0.05 \rho_{\text{DM}} \, . \]

Thus, soft DR quanta have a potential to outnumber the RJ CMB photons by up to \(\sim 11 \) orders of magnitude.

What are the observational consequence of such soft and numerous DR? Very light fields often have their interactions enhanced (suppressed) at high (low) energies. This is the case for neutrinos, that have Fermi-type interactions with atomic constituents, as well as of axions that have effective dimension 5 interactions with fermions and gauge bosons. This type of DR would be impossible or very difficult to see directly. There is, however, one class of new fields comprising DR that can manifest their interactions at low energies and low densities. These are light vector particles (often called dark photons), \(A' \), that develop mixing angles with ordinary photons, \(\epsilon F_{\mu\nu} A' \). The apparent number counts of the CMB radiation can be modified by photon/dark photon oscillations:

\[\frac{dn_A}{d\omega} \rightarrow \frac{dn_A}{d\omega} \times P_{A \to A} + \frac{dn_{A'}}{d\omega} \times P_{A' \to A} \, , \]

where \(P_{A' \to A} = 1 - P_{A \to A} \) is the photon survival probability, while \(P_{A' \to A} \) is the probability of \(A' \to A \) oscillation. Previously the constraints on the \(\{ m_{A'}, \epsilon \} \) parameter space were derived \cite{14 15} using COBE-FIRAS data \cite{16} (that is, considering the depletion of CMB photons due to the first term in eq. (4)). The point of the present paper is that the RJ tail of the CMB can get a significant boost due to the second term in \((4) \), without contradicting the COBE measurement. While the reliable extraction of the primordial contribution to the RJ tail is challenging due to significant foregrounds, the physics of the 21 cm line can provide a useful tool to probe DR through the apparent modification of the low-energy tail of the CMB.

The EDGES experiment has recently presented a tentative detection of the 21 cm absorption signal coming from the interval of redshifts \(z = 15 - 20 \). The strength of the absorption signal is expected to be proportional to \(1 - T_{\text{CMB}} / T_s \), where \(T_{\text{CMB}} \) counts the number of CMB photons interacting with the two-level hydrogen hyperfine system, and \(T_s \) is the spin temperature. The relevant photon energy is \(\omega_0 = 5.9 \; \text{meV} \), and photons with this energy at the redshift of \(z = 17 \) reside deep within the RJ tail, \(x_0 \equiv \omega_0 / T_{\text{CMB}} = 1.4 \times 10^{-3} \). This corresponds to much lower energy than direct measurements such as COBE-FIRAS, that measures above \(x = 0.23 \), and ARCADE 2, which probes as low as \(x = 0.053 \). Together with this result could consist in lower-than-expected \(T_s \), or higher \(T_{\text{CMB}} \). Together with related prior work \cite{22 23}, a number of possible models were suggested \cite{24 28}, most of which have difficulty to pass other constraints. \cite{29 33}. The mechanism that we point out, oscillation of non-thermal DR into visible photons, can accommodate the EDGES result without being challenged by other constraints. In the rest of this paper, we provide more details on the suggested mechanism, and identify the region of parameter space where 21 cm physics can provide the most sensitive probe of DR.
Decay of unstable relics into dark radiation: The framework described in the introduction allows for significant flexibility with respect to the actual source of non-thermal soft DR. To give a concrete realization of this, we leave the study of a model of unstable scalar particles, \(a \), that couple to dark dark photons via an effective dimension five operator,

\[
\mathcal{L} = \frac{1}{2} (\partial_{\mu} a)^2 - \frac{m_a^2}{2} a^2 + \frac{a}{4 f_a} F_{\mu \nu} F^{\nu \mu} + \mathcal{L}_{AA'},
\]

(5)

where \(F_{\mu \nu} = \frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma} \), and the last term describes the photon-dark photon Lagrangian with corresponding mixing terms for \(A' \):

\[
\mathcal{L}_{AA'} = -\frac{1}{4} F_{\mu \nu}^2 - \frac{1}{4} (F_{\mu \nu}')^2 - \frac{\epsilon}{2} F_{\mu \nu} F_{\mu \nu}' + \frac{1}{2} m_{A'}^2 (A'_\mu)^2.
\]

(6)

We assume that an initial relic abundance of \(a \) is present. The cosmology of \(a \) is model-dependent, but to keep our discussion general we leave the study of \(a \) production for future work.

The decay rate of \(a \rightarrow 2A' \) is

\[
\Gamma_a = \frac{m_a^3}{64 \pi f_a^2} = \frac{3 \times 10^{-4}}{\tau_U} \left(\frac{m_a}{10^{-4} \text{eV}} \right)^3 \left(\frac{100 \text{GeV}}{f_a} \right)^2.
\]

(7)

The lifetime, \(\tau_a = 1/\Gamma_a \), can be either much longer or much shorter than the present age of the Universe, \(\tau_U \approx 13.8 \times 10^9 \text{ y} \), depending on the choice of parameters in (5).

For the case of short lifetimes, \(\tau_a \ll \tau_U \), we require that the mass of \(a \) is such that at the time of decay, \(\Gamma_a \sim H(T) \), the energy of the resulting \(A' \) matches the CMB energy in the RJ tail, \(x \sim 10^{-3} \). Here, \(H(T) \) is the Hubble expansion rate as a function of photon temperature. Assuming decays during radiation domination, this condition amounts to \(g_*^{1/4} f_a \sim 10^{5} - 10^{6} \text{GeV}(m_a/\text{GeV})^{1/2} \), in terms of parameters in (5), where \(g_* \) is the effective number of degrees of freedom. If this condition is satisfied, the decays of \(a \) to \(A' \) can happen arbitrary early, but the energy of the \(A' \) still approximately match RJ photons.

The case of a cosmologically long-lived particle, \(\tau_a \gg \tau_U \), is especially attractive as \(a \) can also naturally serve as DM. For the remainder of this paper, we will concentrate on this possibility. If the mass of \(a \) falls in the range \(10^{-5} \text{eV} < m_a < 10^{-1} \text{eV} \), its decay can create significant modifications to the RJ tail of the CMB spectrum via \(A' \rightarrow A \) oscillations. It is worth noting that this overlaps the mass range often invoked for axion DM.

\(A' \leftrightarrow A \) oscillations and constraints: All constraints on parameters of (5) and (6) can be divided into two groups: those that decouple as \(m_{A'} \rightarrow 0 \), and those that persist even in the limit of a massless dark photon. The stellar energy loss constraint due to \(A'a \) pair production is in this second category, as the in-medium transverse modes of photons can decay via \(A_T^* \rightarrow A'a \) even in the \(m_{A'} \rightarrow 0 \) limit. We calculate the approximate emission rate to be

\[
Q_{A' \rightarrow A'a} = \frac{\epsilon^2 m_{A'}^4}{96 \pi f_a^2},
\]

(8)
where n_T is the number density of transverse plasmons (photons) and m_A is the standard plasma frequency, $m_A^2 = 4\pi n_e m_e$. Observing that it has the same scaling as the emission rate for a pair of Dirac neutrinos due to their magnetic moment μ, $Q_{A' \rightarrow \nu \bar{\nu}} = \mu^2 m_A^2 n_T (2\pi)^{-1}$ [33, 35], we recast the corresponding bound $\mu \leq 3 \times 10^{-15}(\epsilon/2m_e)$ [37] to obtain

$$\epsilon \times f_a^{-1} < 2 \times 10^{-9} \times \text{GeV}^{-1}.$$ \hspace{1cm} (9)

In addition, the ϵ-parameter is limited via $A \rightarrow A'$ oscillations [33], and depends rather sensitively on $m_{A'}$. Stellar energy losses via these oscillations are important only for the higher mass range of A', $m_{A'} > 10^{-5}$ eV, as the emission is suppressed by $m_A^2/m_{A'}^2$ inside stars, which is a small parameter [39, 40]. Cosmological $A \leftrightarrow A'$ oscillations may be significant if the resonant condition is met, $m_{A'} = m_A(z)$, where $m_A(z)$ is the plasma mass of photons at redshift z [14, 15]. In the course of cosmological evolution $m_A(z) \simeq 1.6 \times 10^{-14} \text{eV} \times (1+z)^{3/2} N_e(z)$ [36]. X_e is the free electron fraction that we take from [15]. For any $m_{A'}$ in the range $10^{-14} - 10^{-9}$ eV, the resonance happens at some redshift, z_{res}, within the cosmic dark ages, see the left panel of Fig. 2. The resonance ensures that the probability of oscillation is much larger than the vacuum value of ϵ^2. Following [14, 31], we take it to be

$$P_{A \rightarrow A'} = P_{A' \rightarrow A} = \frac{\pi^2 m_{A'}^3}{\omega} \frac{d}{dt} \left| \frac{d \ln m_{A'}^3}{dt} \right|^{-1}.$$ \hspace{1cm} (10)

We remark that this expression is valid only in the limit $P_{A' \rightarrow A} \ll 1$. For large ϵ the probability saturates, and in such cases we use its full expression. We notice that the probability of oscillation for RJ photons, $x \sim 10^{-3}$, can be three orders of magnitude larger than for photons with $x \sim 1$, due to the ω^{-1} dependence. The redshift dependence of (10) is shown in the right panel of Fig. 2, assuming a dark photon energy that is relevant for 21 cm, $x_0 = 1.4 \times 10^{-3}$.

Dark age resonance and EDGES signal: For $z_{abs} \lesssim 1700$, the Universe becomes transparent to photons that are converted into the RJ tail of the CMB, $x \sim 10^{-3}$, whereas for $z > z_{abs}$ these soft photons are efficiently absorbed [42]. Therefore, only dark photons with $m_A < m_{A'}(z_{abs}) \approx 10^{-9}$ eV—possibly injected at a much earlier epoch—will yield excess radiation at 21 cm. Focusing on a mono-chromatic injection of A' with cosmologically long lifetime $\tau_a > \tau_U$, the energy spectrum at redshift z
reads,
\[
\frac{dn_{A'}}{d\omega}(\omega, z) = \frac{2\Omega_\alpha \rho_\alpha (1 + z)^3}{m_a \tau_a H(\alpha - 1)} \Theta(\alpha - 1 - z) .
\] \(11\)

Here, \(\rho_\alpha\) is the critical density today and the Hubble rate, \(H(z)\), is evaluated at redshift \(\alpha - 1\), where \(\alpha \equiv m_a (1 + z)/(2\omega)\). In the following we saturate the \(\alpha\)-abundance (prior to decay) to the CMB-inferred DM density, \(\Omega_a h^2 = 0.12\). The total number of injected \(A'\) grows with cosmic time \(t(z)\), and can eventually outgrow \(n_{\text{CMB}}\) by a large margin, \(n_{A'}(z) = (6 \text{ eV}/m_a) (t(z)/\tau_a) \times n_{\text{CMB}}\).

Once the resonance condition is met at \(z = z_{\text{res}}\), a fraction of \(A'\) will be converted as per Eq. \(4\). Those extra photons then redshift, and, overall, the spectrum of converted photons at \(z < z_{\text{res}}\) becomes,
\[
\frac{dn_{A'}}{d\omega}(\omega, z) = \left(\frac{1 + z}{1 + z_{\text{res}}} \right)^2 \frac{dn_{A'}}{d\omega}(\omega', z_{\text{res}}) P_{A' \rightarrow A}(\omega', z_{\text{res}}) .
\] \(12\)

Here, \(\omega' = \omega(1 + z_{\text{res}})/(1 + z)\) is the blue-shifted energy at resonance. The right panel of Fig. \(3\) shows \(12\) (solid black line). It is compared to the RJ tail of the CMB (dashed orange), and to the spectrum of \(A'\), Eq. \(11\), rescaled by a factor \(10^{-3}\) (dotted black). Furthermore, \(m_a = 10^{-3} \text{ eV}\), \(\tau_a \equiv 100 \times \tau_U\), and \(\epsilon = 2.1 \times 10^{-7}\) are chosen.

In order to identify models that can be tested with 21 cm observations, we compare the number density of converted photons, \(n_{A' \rightarrow A}\), to the RJ density of the CMB, \(n_{\text{RJ}}\), within a relevant energy window. We define this window to include all photons with a wavelength of 21 cm within the redshift interval \(z = 15 - 20\). This is equivalent to requiring
\[
x \in (x_{21}^{\text{min}}, x_{21}^{\text{max}}) = (1.2, 1.6) \times 10^{-3} .
\] \(13\)

The left panel of the same plot shows \(\{m_{A'}, m_a\}\) parameter space relevant for the 21 cm signal. Low values of \(m_a\) give photons that are too soft to affect the 21 cm absorption line, while high values produce photons at energies that (depending on other parameters) could be probed by COBE-FIRAS. Low and high limiting values for \(m_{A'}\) originate from the requirement of a resonance in the relevant redshift window, with some interval \(10^{-13} - 10^{-12} \text{ eV}\) possibly disfavored by black hole
superradiance (34) (see also (33 44)). The crucial question that remains to be investigated is whether values of ϵ and τ_a required to make a significant modification to the 21 cm signal are consistent with other constraints. To that end, we select one point on $\{m_{A'}, m_a\}$ parameter space, shown by an asterisk on the left panel of Fig. 3 and analyze it in full detail.

The selected point corresponds to the resonance at $z_{\text{res}} = 500$. By combining Eqs. (7), and (12), we first determine by how much the RJ photon count can be increased due to $A' \rightarrow A$ conversion in the $1.2 \times 10^{-3} < x < 1.6 \times 10^{-3}$ interval. The left panel of Fig. 4 shows the allowed values for the RJ photon increase, when the lifetime τ_a of the DM particle is varied, which is equivalent to scanning f_a. We observe that the photon count can be increased by more than an order of magnitude with higher values limited by the stellar bound on ϵf_a^{-1} in (9). If $n_{A\rightarrow A}/n_{\text{RJ}}$ is kept constant, while τ_a is increased, the required value of ϵ eventually runs into the CMB spectral distortion constraint. Still, we find that the unexpected strength of the EDGES signal, which would require roughly $n_{A'\rightarrow A}/n_{\text{RJ}} \simeq 1$ can be easily met over four orders of magnitude in the lifetime, $\tau_a \sim (10 - 10^5)\tau_U$. Finally, the right panel of the same figure presents the $\{m_{A'}, \epsilon\}$ slice of the parameter space, where τ_a is chosen such that $n_{A'\rightarrow A}/n_{\text{RJ}}$ is set to 1. Since $m_{A'}$ is allowed to vary, z_{res} is scanned along the horizontal axis. The white area shows the significant portion of the parameter space that is allowed, including the asterisk-marked point that corresponds to the spectrum plotted earlier in Fig. 3 right panel. It is worth noting that much of the allowed parameter space can be probed by future generation of experiments aimed to refine COBE-FIRAS measurements.

Discussion: The concrete model of decaying light DM presented here is simple, but definitely not unique, opening an avenue of studying such models in greater detail. For example, a fully renormalizable model with a naturally achieved abundance of DM can be built using the coupling of dark matter, a, to a scalar Φ that is charged under a $U(1)'$ gauge group,

$$\mathcal{L} = \mathcal{L}_a + \mathcal{L}_{AA'} + |D_\mu \Phi|^2 - V(|\Phi|^2) + \mu a|\Phi|^2,$$

(14)

where $D_\mu = \partial_\mu + ig' A'_\mu$, $\mathcal{L}_a = (\partial_\mu a)^2/2 - m_a^2 a^2/2$ as before, and $\mathcal{L}_{AA'}$ includes all terms as in (6) but the mass term for A' that will arise upon the condensation of the Φ field. The last term represents the Higgs-portal type coupling, leading to the decay of DM particle a to two dark Higgs particles h', which in turn can decay to a pair of dark photons, $a \rightarrow 2h' \rightarrow 4A'$. This model fulfills our basic requirements for creating a population of non-thermal A', with the same implications for RJ photons. The stellar constraints will limit the product of $g' \epsilon$, but are not directly related to τ_a. The DM abundance of a may arise from the initial displacement of a from its minimum, as for most models of light bosonic DM. Detailed analysis and classification of further models of light DM that can be probed using RJ photons is beyond the scope of the current paper.

Finally, we comment on other possible signatures of this type of models. In particular, the decay of a inside galaxies and clusters of galaxies will lead to a flux of A', that could be converted to regular photons, as dark photons travel outside such a cluster, from high to low density. If a typical density of electrons inside a cluster is employed 16, $n_e \sim 10^{-3}\text{cm}^{-3}$, this may create a sizable flux of photons, if the dark photon mass is on the order of 10^{-12}eV or lighter. Models with higher $m_{A'}$ may also experience resonant conversion in cluster regions of higher electron density. Thus, radio and microwave emission from clusters may contain components that are not expected from models with stable DM. The resulting signals/constraints will have strong dependence on both m_a and $m_{A'}$, may contain astrophysical uncertainties, and will be addressed separately.

Conclusions: The RJ tail of the CMB spectrum can be modified by light and weakly coupled New Physics particles/fields without contradicting any other cosmological or astrophysical constraints. We have presented one such example where the resonant conversion of non-thermal and numerous dark photons to ordinary photons leads to an enhancement in the RJ tail of the CMB. The upcoming era of 21 cm precision cosmology, as perhaps signaled by the first reported tentative detection [17], will provide an invaluable tool in testing such new physics.

Acknowledgments: We thank Yacine Ali-Ha¨ımoud and Jens Chluba for helpful conversations. MP and JTR acknowledge the financial support provided by CERN. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Economic Development & Innovation. JP is supported by the New Frontiers program of the Austrian Academy of Sciences. JTR is supported by NSF CAREER grant PHY-1554858.