ATLAS+CMS top program at HL-LHC

Alexander Khanov
Oklahoma State University
HL/HE LHC Meeting, Fermilab, 4/6/18
Outline

• Perspectives of top physics at HL-LHC
• Top quark identification
• Review of recent studies of top physics at HL-LHC
 – Flavor changing neutral currents
 – J/ψ reconstruction in top decays
 – tt resonances
• More top physics at HL-LHC
• Summary
Top at HL-LHC

- With projected 3000/fb of integrated luminosity, the number of top quarks produced at HL-LHC is huge
- Plenty of topics for SM physics studies:
 - Precision measurement of top production (kinematic properties, differential cross sections) and properties (mass)
 - Verification of theoretical models
 - Top couplings
 - Associated top production: \(tt(V/\gamma/H)\)
 - Rare decays
- Physics beyond SM:
 - Resonances decaying into top quarks
 - Asymmetries, chromomagnetic moments
 - Top quarks arising in BSM processes (SUSY, charged Higgs,..)
HL-LHC challenge

• Challenging experimental environment
 – Need to find the ways to mitigate the pileup: $<\mu>=140$ at $L=5\times10^{34}/\text{cm}^2\text{s}$, 200 at $L=7.5\times10^{34}/\text{cm}^2\text{s}$
 – Top quark reconstruction is particularly complex, relies on all detector components

• Challenge to physics studies
 – Object performance: can’t afford full simulation for all analyses, use parameterized performance functions
 – Extrapolation of analyses with background derived on real data is tricky
 – Need to figure the way to evaluate the evolution of various systematic uncertainties
 • Zero approximation: assume systematic uncertainties as in Run 2
 • Many systematic uncertainties are expected to be reduced with statistics (e.g. background production cross sections), both due to lower stat. uncertainty and ability to go to tighter operating points
 • Difficult to evaluate without dedicated studies, \sqrt{L} scaling seems like a good estimate
Top quark identification

- Top quarks decay right after they are born, need to be reconstructed
- $\text{Br}(t \rightarrow Wb) \sim 100\%$ unless we are looking for rare decays
- Two options: $t \rightarrow Wb \rightarrow l\nu b$ or $t \rightarrow Wb \rightarrow jjb$
 - Leptonic top: (isolated) $e/\mu + b$-jet + MET
 - Hadronic top, resolved: three jets, one of them b-jet
 - Hadronic top, boosted: a large R jet with substructure
- Identification of jets coming from b-quarks (b-tagging) is key for top reconstruction
b-tagging performance (1)

- Current b-tagging algorithms at both ATLAS and CMS are based on track impact parameters and reconstruction of secondary vertices
- Information related to IP and SV is combined into a single discriminating variable (tag weight) using multivariate analysis techniques
 - CMS: cMVAv2 (BDT, central region), DeepCSV (deep neural network, forward region)
 - ATLAS: MV2 (BDT), DL1 (deep learning – not currently used for upgrade studies)
- Questions to address at HL-LHC:
 - algorithm sensitivity to high pileup environment up to \(<\mu>=200\)
 - performance in the very forward region: both experiments intend to extend the b-tagging \(|\eta|\) coverage up to 3.5—4
b-tagging at high luminosity remains solid
 – b-tagging efficiency at fixed mistag rate is a function of pileup density, not $<\mu>$

Performance in the very forward region is a problem
 – Existing algorithms are not optimized for large $|\eta|$, tracking is losing lever arm
Jet substructure

- Jet substructure: way to identify highly boosted tops (and W,Z,H)
 - mass drop: ratio of masses of highest subjet and the large-R jet
 - Nsubjettiness τ_N: p_T weighted ΔR distance between each jet constituent and its nearest subjet axis under assumption that the jet has N subjets
- With the upgraded CMS tracker, highly granular jet substructure reconstruction is available at higher jet momenta than achieved with the Phase-1 tracker
 - improved large R jet mass resolution
 - gain in identification of boosted objects

CMS-TDR-014
Flavor changing neutral currents (1)

- Flavor changing neutral currents: golden analysis for top physics
 - SM: not allowed at the tree level, highly suppressed in loops
 - Enhanced in BSM: RPV SUSY, technicolor

<table>
<thead>
<tr>
<th>BR</th>
<th>SM</th>
<th>2HDM</th>
<th>MSSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t \rightarrow cg$</td>
<td>5×10^{-12}</td>
<td>$10^{-8}-10^{-4}$</td>
<td>$10^{-7}-10^{-6}$</td>
</tr>
<tr>
<td>$t \rightarrow cZ$</td>
<td>1×10^{-14}</td>
<td>$10^{-10}-10^{-6}$</td>
<td>$10^{-7}-10^{-6}$</td>
</tr>
<tr>
<td>$t \rightarrow c\gamma$</td>
<td>5×10^{-14}</td>
<td>$10^{-9}-10^{-7}$</td>
<td>$10^{-9}-10^{-8}$</td>
</tr>
<tr>
<td>$t \rightarrow cH$</td>
<td>3×10^{-15}</td>
<td>$10^{-5}-10^{-3}$</td>
<td>$10^{-9}-10^{-5}$</td>
</tr>
</tbody>
</table>
Flavor changing neutral currents (2)

- $tt \rightarrow (l\nu b)(Zq) \rightarrow 3l+(\geq 1\ b\text{-jet})+(\geq 1\ jet)$
 - Strategy: kinematic reconstruction via χ^2
 - Dominant uncertainties: data driven fakes and tV/ttV backgrounds

- $tt \rightarrow (l\nu b)(Hq) \rightarrow l+(2,3\ b\text{-jets})$
 - Strategy: discriminant built from PDFs for each jet permutation
 - Dominant uncertainties: tt+HF normalization, flavor tagging

BR limits (depending on systematic extrapolation scenario):
- $t \rightarrow Zu$: $(1-2) \times 10^{-4}$
- $t \rightarrow Zc$: $(2-4) \times 10^{-4}$
- $t \rightarrow Hq$: $\sim 2 \times 10^{-4}$
Flavor changing neutral currents (3)

- \(tt \rightarrow (\mu b)(\gamma q) \rightarrow \mu + \gamma + (\geq 1 \text{ b-jet}) \)
 - Strategy: cut-and-count
 - Dominant systematic uncertainties: instrumental (fake photons), \(tV+jets, VV \gamma \)
J/ψ reconstruction in top decays

- Look at $t \rightarrow Wb \rightarrow (\mu\nu)(J/\psi+X) \rightarrow 3\mu+X$
- Alternative measurement of top mass that does not suffer from uncertainties due to b-jet reconstruction
- An opportunity to perform a dedicated tuning of the b fragmentation

Expected number of events in the J/ψ peak at 3000/fb: 6×10^5

Expected m_t precision:
- ± 0.24 GeV (stat)
- ± 0.53 GeV (syst)

CMS-TDR-014

CMS-TDR-016
Heavy tt resonances

- Many theories predict heavy (TeV scale) particles decaying into top pairs
- Produced tops are highly boosted, leading to dense tracking environment
- Benchmark: leptophobic Z' from topcolor-assisted technicolor
 - $\text{Br}(Z' \to tt) = 1/3$, width $<<$ experimental resolution
 - ATLAS exclusion limit ($3.2/\text{fb}$, $\sqrt{s}=13$ TeV): 2.0 TeV
- Current analysis: $Z' \to tt \to l\nu qq \to (e/\mu) + b + \text{large-R-jet+MET (boosted)}$ or $Z' \to tt \to l\nu qq \to (e/\mu) + b + \geq 3j + \text{MET (resolved)}$
- Obtained Z' mass reach: 4 TeV
More top physics at HL-LHC

- 4top production
 - new physics (resonances, top compositeness, 4t vertices,..)
 - sensitivity to Higgs width
 - $\sigma_{SM} = 6$ fb at $\sqrt{s} = 13$ TeV, need HL-LHC to discover
- Wtb couplings
 - see previous talk
- V_{ts}/V_{td} measurements
 - can be improved measuring single top production vs rapidity (arXiv:1002.4718)
- ttZ, $tt\gamma$, ttg couplings
- Charge asymmetry in top-antitop production
 - may learn a lot from comparison of tt and ttW (arXiv:1406.3262)
Summary

- Top quark studies at HL-LHC open possibilities to improve our understanding of the SM and search for BSM physics in channels that depend on statistics
 - rare decays, multidimensional differential cross sections, couplings, ..
- Top quark reconstruction is complex, relies on all detector components and accurate Monte Carlo modeling
 - many current measurements are systematics driven
- Other physics analyses depend on good understanding of top production
 - top is background to most processes with heavy flavor in the final state: SM and BSM Higgs, SUSY, ..
 - calibration of detector performance, particularly b-tagging algorithms
- The top studies for HL-LHC are at their beginning
 - more studies will show more potential